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Abstract

Greater penetration of wind energy demands better utilization of available wind. This

has led to a formidable increase in the rotor diameter over the past few years. Bigger

rotors call for lighter, more flexible blades to reduce loads and improve fatigue life. As

a result, future blades will deform substantially more than the relatively stiff blades of

the past. More efficient use of wind power also calls for incorporating advanced active

and passive control strategies and increasing the range of velocities over which wind

energy is captured. Hence an improvement in the quality of numerical simulations

capable of capturing the effects of these deformations is key to innovations in wind-

turbine technology.

The code on which this research aims to improve upon is called the Dynamic Rotor

Deformation - Blade Element Momentum model (DRD-BEM) introduced by Ponta

et al. [8]. It combines an advanced structural model with an aerodynamic model im-

plemented in a parallel HPC supercomputer platform. The structural part simulates

the response of heterogeneous composite blades, based on a variation of the dimen-

sional reduction technique proposed by Hodges and Yu Yu et al. [12]. This approach

reduces the 3-Dimensional complexity of the blade section into a stiffness matrix for

an equivalent beam, substantially reducing the computational effort required to model

the structural dynamics at every time step. The aerodynamic model is based on an

xvii
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advanced implementation of the Blade Element Momentum (BEM) theory, where all

velocities and forces are re-projected into the deformed configuration at that instant.

This ensures that the effects of all the complex modes of rotor deformation and subse-

quent rotation of airfoil sections are accounted for while computing the aerodynamic

forces.

As a result of the out of plane attitudes of the rotor sections introduced by blade

deformations and various control strategies the hitherto small radial component of

aerodynamic forces in the hub must now be taken into account. In this research we

present a way to extend the capabilities of DRD-BEM by taking into consideration the

3-Dimensional effects of these forces on rotor interference. In this method, called the

3-D DRD-BEM, the coordinate system where the momentum balance is performed

in BEM theory is moved, from the hub, to the instantaneous position and alignment

of the blade section in its deformed configuration. Another aspect that becomes im-

portant as blades become more flexible and control strategies become more complex,

is the high axial induction factor regime of turbine operation. This becomes more

evident in the instaneous blade section coordinate system of the 3-D DRD-BEM. In

most implementations of BEM, this flow regime is modeled using empirical relations

based on experimental data with no consensus on which empirical relation to use.

This research uses CFD solutions to develop an improved actuator disk model and

revisit the above mentioned experiments for a more accurate representation of these

operational states.

xviii
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Chapter 1

Introduction

Worldwide demand for energy has been steadily increasing especially in developing

countries like India, China and Brazil. This has lead to a renewed interest in devel-

oping renewable sources of energy like wind and solar to reduce the environmental

impact caused by conventional methods of generating electricity. Wind energy has

emerged as an important supplier of grid-connected electricity in the global energy

picture thanks to considerable technological progress during the last twenty years [13].

Wind power is one of the most rapidly growing renewable energies. Global installed

capacity grew from 14,604 MW in 2000 to 84,934 MW in 2007, an impressive rate

of 482% in only seven years according to [14]. In 2016 wind energy emerged ahead

of coal and nuclear as the second largest source of power in Europe after gas. The

Global Wind Energy Council in its Global Wind Energy Outlook 2016 have outlined

1
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scenarios where wind could supply 20% of global electricity by 2030.

This rapid spread of wind energy has fueled the need for constant innovation in the

wind-turbine industry. Current trends clearly show a steady increase in size of state-

of-the-art wind turbines. The European Wind Energy Association (EWEA) in a

recent report have predicted state-of-the-art turbines capable of generating 20 MW

with rotor diameters in excess of 250 m [15]. In a study carried out by the swiss

federal institute of technology it has been suggested that over the last three decades,

the size of the state-of-the-art machine has increased four times. Economies-of-scale

factors drive this tendency substantially reducing the cost of wind energy. Some of

the largest wind turbines in operation are Vestas V164 8MW, Enercon E126 7.5MW,

Samsung S7.0 171 7MW , Siemens SWT-7.0-154 and REpower 6M 6.2MW. Figure 1.1

shows the 7 MW Siemens SWT 7.0 154.

Such huge rotors lead to much higher loads on turbine blades increasing the need

for developing lighter and hence more flexible blades along with new and complex

control strategies. However, with increasing rotor sizes and numerous innovative con-

trol strategies to be explored extrapolating experimental data becomes increasingly

complicated, expensive and time consuming. The need for mathematical models that

can act as virtual laboratories has never been felt more in the wind turbine industry

than the present. Simulation models are increasingly being used for optimizing the

structural as well as aerodynamic aspects of wind turbines. However, the complexity

2
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Figure 1.1: Siemens 7MW Wind turbine With a rotor diameter of 154
meters. (Photo: www.siemens.com/press, Appendix B)

3
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of these innovations added to the already complex coupled aeroelastic problem of

wind turbine dynamics pushes the limits of existing computer models. As mentioned

above, upscaling has led to higher loads as well as increased cost of manufacture, and,

therefore, has prompted the need to design lighter, more flexible blades. New control

mechanisms exploiting this increase in flexibility have been proposed and studied in

the form of adaptive blades, which utilize coupling between bending and twisting to re-

duce extreme loads and improve the fatigue performance of these mega structures (for

a detailed discussion on the adaptive-blade concept see [16] and references within).

Coning rotors is another promising innovation that could be used to mitigate the ef-

fects of extreme loads and improve energy capture (see Jamieson [17]). Crawford and

Platts [18] present a detailed discussion of the development and operation of coned

rotors. Rasmussen et al. [19] introduced a downwind soft rotor concept. This rotor

concept is expanded further in the form of a segmented blade design, which hinges at

a joint [20] (see figure 1.2) or joints at multiple segments [21], to align the rotor with

the wind direction under extreme conditions. It is clear that these novel approaches

will introduce much higher levels of misalignments of blade sections with respect to

the plane of rotation than what has been seen hitherto. The rotor configuration will,

therefore, differ significantly from the original one on which most of the hypotheses of

existing models are based. Some of the underlying assumptions in these hypotheses

must now be re-evaluated to account for the above mentioned changes. An important

example is Crawford’s analysis of the applicability of the BEM theory for the coning

4
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Figure 1.2: A Segmented Ultralight Morphing Rotor (SUMR) from Sandia Na-
tional Laboratories. A concept 50-MW turbine which can stow away the blades un-
der extreme conditions by aligning them with the wind direction to prevent damage
to the rotor. The blades can be spread out again in low winds to maximize energy
capture. (Illustration by TrevorJohnston.com / Popular Science [1], Appendix B)

rotors mentioned above [22]. All of this, as explained in the next section, forms the

basis of this dissertation.

1.1 Dissertation goals

Existing codes couple the aerodynamic and structural models either as a full 3D prob-

lem (see Bazilevs et al. [23, 24] for more details) or after using some form of dimen-

sional reduction. Full 3-D models being computationally expensive, limit the number

5
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of new turbine designs and control strategies that can be tested. Dimensionally re-

duced schemes can, however, represent critical features of the coupled multi-physics

dynamics of the aeroelastic problem, with much less computational effort.

For the structure of the blade, once it has been reduced dimensionally to a 1-D prob-

lem, its behavior is usually modeled using either the Bernoulli theory or the more

comlex Timoshenko beam theory. The problem is then solved using either a spatial

discretization method (like finite elements or finite differences) or a modal discretiza-

tion scheme which keeps only a finite number of deformation modes in the solution.

In both methods continuity also reduces to a 1-D domain. For solving the aero-

dynamics involved in an aeroelastic problem, generally the classical Blade Element

Momentum (BEM) theory is implemented. Together the structural and aerodynamic

models provide a coupled, non-linear scheme (see [25] for a comprehensive explana-

tion). Most existing models like the FAST-Aerodyn suite [26, 27, 28] are based on

such a technique. These combined models while quite successful do not effectively

capture the entire range of interactions between the structural and aerodynamic parts

of the model. The mutual feedback between the two, in the form of rorotr deforma-

tion from the structural side effecting aerodynamic loads and the aerodynamic loads

from the flow model in turn effecting rotor deformation, has a very limited represen-

tation in these models. To better capture this complex interaction and for a higher

level of description, a complex simulation model combining two advanced numerical

6
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schemes was developed. It consists of a mathematical model for the structural re-

sponse [29] based on a dimensional reduction technique proposed by Yu et al. [12].

The model is able to capture and couple all deformation modes of a heterogeneous

composite wind turbine blade, while saving significantly computational expense. The

aerodynamic part uses an innovative BEM approach with orthogonal transformation

matrices, constructed using the instantaneous deformed configuration of a blade sec-

tion, used to reproject velocities and force vectors at that section. This model is

able to incorporate the effects of deformation on the aerodynamic loads and vice

versa at every instant. This advanced aeroelastic model is called the Dynamic Rotor

Deformation - Blade Element Momentum model (DRD-BEM) (see Ponta et al. [8]).

However, further exploration is required when dealing with future turbines using dif-

ferent control techniques and flexible blades increasing the complexity of the aeroe-

lastic problem. All existing models using the BEM principle consider only the axial

and tangential force components in the hub coordinate system. This work aims at in-

cluding the effects of the radial force component to the DRD-BEM model. The radial

forces will have increasing significance with the introduction of flexible pre-conformed

blades and innovative control strategies leading to rapidly varying blade attitudes.

With widespread implementation of adaptive blade strategies (for details see [16]) and

active control mechanisms, turbine rotors can be expected to undergo higher levels

of distortion and also remain operational for a much wider range of wind velocities.

7
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All these factors often lead to certain blade sections encountering operational states,

possibly in the midst of a control action, with axial induction factors greater than

0.5. A few possible scenarios which could drive blade sections into this regime are:

1. Transitional states during control actions, e.g. pitch-to-feather, reducing rotor

RPM against rotor inertia etc. [30, 31].

2. Operating in part load conditions during high wind conditions to store and

release kinetic energy of rotating masses as required [32, 33, 34, 35, 36, 37].

3. Sudden drop in effective or actual wind speeds [38]

4. Failure of control actions

5. Deformation of blades, as they become increasingly flexible, might drive certain

sections into such regimes.

Sebastian [38] presents an analysis of how often off-shore wind turbines can enter

such regimes. The assumptions of the momentum theory across a stream tube as

used in BEM cannot be used in this regime. In most implementations of BEM, this

high axial induction factor flow regime is modeled using empirical relations based on

experimental data.

The empirical relations were first proposed by Glauert [4] wherein he considered

data from [7, 11, 39]. Several modifications have been proposed to this empirical

8
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fitting of the experimental data as seen in [2, 5, 16, 40]. These modifications will be

briefly discussed in subsequent sections. There is no clear consensus on which relation

best describes this flow regime. One of the reasons could be the uncertainty in the

experimental results especially in the vortex ring state. The original data has a lot

of dispersion due to limitations of sensors used in that era as well as the unsteady

nature, as expected, of a non-ideal case. The BEM theory, on the other hand, is

based on a steady in the average momentum balance across an ideal actuator disk.

The goal of this dissertation can therefore be divided into two phases:

1. First, to develop a BEM model capable of implementing the effects of the above-

mentioned radial forces in the momentum balance, giving a full 3-Dimensional

representation to the rotor interference.

2. Second, a more accurate representation of the various high axial induction factor

operational states mentioned above in our BEM model (3-D DRD BEM). For

this, it would be useful to further explore these regimes, using a CFD tool

to solve for flow across an exact representation of an actuator disk instead of

relying solely on the above mentioned experimental data.

It should be noted that the REPower 5M shown in Figure 1.3 forms the basis of the

reference turbine used in this research. It can generate 5 MW with a rotor diameter

of 126 m (see basic characteristics on table 1.1) being available for both inland and

9



www.manaraa.com

Figure 1.3: REpower 5M, with an output power of 5 MW and a rotor diameter
of 126 m. Picture taken by Hans Hillewaert. Appendix B.

offshore installations.
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Table 1.1

Main characteristics of the REpower 5MW wind turbine.

Design
Rated Power 5000 kW
Cut-In Wind Speed 3.5 m/s
Rated Wind speed 13 m/s
Cut-Out Wind Speed

Offshore Version 30 m/s
Onshore Version 25 m/s

Rotor
Diameter 126 m
Speed Range 6.9–12.1 rpm
Blades
Length 61.5 m

1.2 Dissertation Outline

Chapter 2 presents the theoretical background of the standard DRD-BEM model. It

couples the aerodynamic and structural models as a dimensionally reduced one di-

mensional model. Full 3-D models being computationally expensive, limit the number

of new turbine designs and control strategies that can be tested. The dimensionally

reduced scheme used in DRD-BEM can represent critical modes of deformation of

the complex aeroelastic problem, with reduced computational effort.

DRD-BEM models the structural response by using the Generalized Timoshenko

Beam Model (GTBM). The GTBM is a generalized implementation of the Timo-

shenko beam theory using a variational asymptotic method. It accounts for warping

of beam sections by interpolating sectional warping using a 2-D Finite element model
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to obtain 3-D warping functions. These warping functions are used to asymptotically

approximate the 3-D strain energy at each section in terms of the six strain measures

including those of the classical 1-D Timoshenko theory and the transverse shear in two

directions. The complex geometry and material properties are represented by stiff-

ness matrices obtained a priori for each section. The generalized implementation of

the Timoshenko theory ensures a fully populated 6x6 stiffness matrix at each section

of the beam coupling all 6 modes of deformation. The 3-D beam problem is thus re-

duced to a nonlinear 1-D beam. This unsteady nonlinear 1-D beam problem together

with the aerodynamic aspect discussed later comprises the aeroelastic problem. This

aeroelastic problem is solved along the beam’s reference axis, L, for every time step

using an advanced ODE algorithm. From each time step of the ODE solution the 3-D

fields can be recovered using the previously derived 3-D warping functions. As seen

in figure 2.1 the solution variables first represented in a coordinate system along L are

transformed into the instantaneous coordinate system along the new configuration l.

This is done with the help of the CLl matrices, updated at every time step of the

ODE solution of the structural model. Thus the instantaneous position of each blade

section is accurately tracked by this intrinsic coordinate system. As a result the aero-

dynamic part of the aeroelastic analysis gets this updated information at every time

step for each blade section. At the same time the results of the aerodynamic solution

constantly update the aerodynamic loads acting at each blade section as inputs to

the structural model for every time step. This is the original DRD-BEM model which

12
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this dissertaion aims to improve upon in the form of the 3-D DRD-BEM as explained

in chpater 3.

Chapter 3 presents the new 3-D DRD-BEM model. As mentioned earlier, there are

still aspects that need further exploration, especially in case of future turbines using

different control techniques or characterized by complex modes of deformation. Hith-

erto, all models based on the BEM principle have considered the axial and tangential

component of forces acting on the system of coordinates of the rotor hub. What

the present work introduces to the DRD-BEM model, is the radial component. The

radial force component will have increasing implications with the introduction of flex-

ible pre-conformed blades, as increased flexibility, along with rapidly varying blade

attitudes (both important aspects of wind turbine control), have a noticeable effect

on the radial forces. Hence, it becomes important to include the effects of these forces

in the momentum balance of a BEM implementation, giving a full 3-Dimensional rep-

resentation to the rotor interference. This is essentially the 3-D DRD-BEM model

presented in this thesis.

Chapter 4 presents the numerical experimentation designed to analyze the 3-D DRD-

BEM model. These experiments are performed on a reference turbine model called

the NREL 5-MW reference wind turbine developed by NREL [41]. This reference

turbine is based on the REPower 5M shown in Figure 1.3. It can generate 5 MW

with a rotor diameter of 126 m (see table 1.1) being available for both inland and

13
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offshore installations and is well representative of typical utility-scale multi megawatt

commercial wind turbines. The numerical experiments consists of comparing the

original DRD-BEM model with the 3-D DRD-BEM model by varying certain aspects

of the rotor model including conicity, tilt and blade stifness. The effect of these

variations on variables like power, thrust, tip-displacement etc are analyzed as a

means to compare the two models.

Chapter 5 explains the need to revisit the set of experimental data used in BEM as

part of Glauert correction for high axial induction factor regimes. This is done with

the help of an actuator disk model in Fluent. This new set of numerical data is then

used to define a new empirical curve which can be used to find the thrust at high

induction factors. It then goes on to presesnt a set of experiments designed to test

this new empirical curve as part of the new 3-D DRD-BEM model. With the help of

these experiments the importance of exploring these regimes is highlighted.

Finally, chapter 6 presents the conclusions for this dissertation work as well as the

outlook for further work based on the analysis of the material presented in the previous

chapters

14



www.manaraa.com

Chapter 2

Dynamic Rotor Deformation -

Blade Element Momentum Model

2.1 Introduction

The two predominant yet distinct approaches to numerical simulation of horizontal

axis wind turbines are the stream-tube and the vortex modeling approaches. The

stream-tube model known widely as the BEM model, proposed almost a century ago

[4, 42], is the most widely used aerodynamic component for analyzing wind turbine

rotors (see [43] and [2] for a comprehensive description of classical BEM). Over the pat

few decades there have been several improvements and corrections to classical BEM .
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Figure 2.1: A schematic showing the sweeping out of an annular actuator by
a blade element (based on the classical BEM representation schematic in Burton
et al. [2]) with and without coning.

Some examples of such modifications over the last decade include works of: Crawford

[22] concerned with analyzing BEM for coning rotors, Lanzafame and Messina [44]

which analyzed and proposed mathematical models representing lift and drag coeffi-

cients. Lanzafame and Messina [45] which explored inclusion of centrifugal pumping

into the BEM model therby modifying lift. Madsen et al. [46] which was concerned

with modifications based on a detailed analysis of numerical and analytical results

of several aerodynamic models. Dai et al. [47] involved corrections to the dynamic

stall model proposed by Leishman and Beddoes [48]. Vaz et al. [49] included into the

BEM model, the effects of wake influence.

The trigonometric projections of velocities and forces used in the classical imple-

mentation of BEM are made under the assumption that the blade sections remain
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wind

zh
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yh

Figure 2.2: The hub coordinate system in accordance with the International
Electrotechnical Commission (IEC) standards [3]

perpendicular to the radial plane of the rotor. Therefore, sectional misalignments as a

result of larger deformations seen in modern wind turbine rotors are not accounted for

while calculating aerodynamic forces. In fact, even the area of the annular actuator

disk is misrepresented since the blade section deformation changes the thickness of

the corresponding stream-tube. These deformations are, however, efficiently captured

in the DRD-BEM model where the incident velocity and the aerodynamic forces are

transformed through different coordinate systems using a set of orthogonal matri-

ces. The transformations include all the misalignments starting from the coordinate

system aligned with the incident wind up to that aligned with the final deformed

configuration of that section at any given instant. The misalignments can be a re-

sult of blade section deformation, control actions like pitching and yawing, azimuthal

rotation, wind direction changes or even design features like coning-angle or tilt.

Figure 2.1 represents the instantaneous position of a blade element at radius rh with
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respect to the hub. δl is the the spanwise length of the blade element and when

projected onto the hub-coordinate system (figure 2.2) it gives the radial thickness of

the annular actuator as swept out by that element. As mentioned earlier, DRD-BEM

takes in to account all possible misalignments at every instant. This ensures that the

area swept by the blade element is updated constantly in the h-coordinate system.

At this point, It should be noted that before deflection, the stream tube is aligned

with with the incident wind and not the hub, owing to the action of the orthogonal

matrices. At the actuator it gets deflected by the forces exerted on the wind by

the actuator. The coned rotor schematic in the extreme right of figure 2.1 shows

how the thickness of the annular actuator swept by a particular blade section in a

coordinate system aligned with that section is given by rhδl. This detail is important

for developing equations for phase A of this research, as explained in the next chapter.

2.2 Blade structural model: The dimensional-

reduction technique for beams

Blades of a Wind turbine can be modeled as slender beams saving computational

expense in comparison with a full 3-D analysis. However, traditional beam theories

(Bernoulli or standard Timoshenko) do not take into account complex internal struc-

tures or heterogeneous distribution of material properties (see figure 2.3, showing a
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typical internal structure of a wind turbine blade. More details on the internal struc-

ture can be found in Griffin [50]). ad hoc kinematic assumptions used in such beam

models introduce errors which become significant blade vibrations are at wavelengths

shorter than the length of the blades.

To tackle these issues Prof. Hodges and his collaborators [12, 51] proposed the

Generalized Timoshenko Beam Model (GTBM). This technique invloves dimension-

ally reducing a complex 3-D beam and subsequently solving it as a 1-D beam. The

GTBM method, unlike the Timoshenko beam theory, on which it is based, allows for

the warping of beam sections once the beam has deformed. The warping is interpo-

lated with the help of a 2-D finite element method and an asymptotic procedure is

used to accurately represent, albeit asymptotically, the 3-D strain energy in terms

of 6 strain measures of the classical 1-D Timoshenko model (namely the extensional

strain, the shear strains and the torsional and bending curvatures). In the 1-D beam

representing the blade being analyzed, each section is represented by a 6 × 6 sym-

metric stiffness matrix. The stiffness matrix allows the model to capture complex

geometry and material properties at that section. This stiffness matrix, along with

the 3-D warping functions mentioned earlier can easily be formulated a priori and in

parallel for all the blade sections used to numerically represent the blade.

The ad hoc kinematic assumptions of the classical Timoshenko beam theory are no

longer made in the GTBM model. This results in fully populated stiffness matrices
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Figure 2.3: Typical internal structure of an airfoil section of a wind turbine
blade. The airfoil profile is based on a NACA series airfoil.

ensuring coupling of all 6 modes of deformation. The 1-D beam problem formulated

by GTBM, together with the aerodynamic model gives the aeroelastic problem ex-

plored in this research. It is an unsteady, non-linear problem advanced in time using

an adaptive ODE algorithm. Once the ODE solution is obtained, the warping func-

tions, which had been used to re-formulate the 3-D beam problem as a 1-D nonlinear

beam problem, are now used to recover the 3-D fields at each time step of the solu-

tion. Figure 2.4 shows how the dynamic and kinematic variables, first represented

by an intrinsic coordinate system along the reference line L (beam axis in its original

configuration), are transformed into an instantaneous coordinate system along the

new configuration l. This explains how the instantaneous position and alignment of

each section of the blade is accurately tracked by the intrinsic system.

Figure 2.4 represents the division of the 1-D beam problem into a dynamic and a

kinematic part (see Otero and Ponta [29] for a detailed description). The dynamic

part is represented by two generalized velocity vectors (linear and angular vibrational
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zl

l 

Planar Beam 

Section  

Warped Beam 

Section 

Solution of 1!D Model for 

Equivalent Beam  

(full 6 x 6 stiffness matrix) 

Dynamic!part variables: vstr ,  str , Fstr , Mstr 

Kinematic!part variables: ustr , ClL  

Figure 2.4: A schematic representation of GTBM where the reference line, the
beam section and the coordinate system are shown before and after deformation.
Also indicated are the variables invloved in the solution’s dynamic and kinematic
parts.

velocities, vstr and str respectively, of the beam section) and two vectorial compo-

nents of the generalized forces acting at each section. At every blade section, the 6

components of these force vectors are directly related to the 6 fundamental deforma-

tions of the Timoshenko theory through the fully populated 6 × 6 stiffness matrix

mentioned earlier. In order to calculate the linear and angular momentum along with

the corresponding forces and moments a 6 × 6 dimensionally reduced inertia matrix

is constructed at every blade section. This sectional inertia matrix accounts for the

complicated airfoil shape at that section as well as the sectional material properties

and material distribution. It also takes in to account all types of rotational motion
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including that of the main shaft or control actions like pitching and yawing. As a

result linear and angular acceleration effects, along with the Coriolis and centrifugal

forces are all considered. The solution of the dynamic part is further used as an input

by the kinematic part to obtain the reference line displacements, ustr, along with the

orthogonal matrices ClL. These orthogonal matrices are responsible for rotating the

blade sections from their original configuration L to the new instantaneous deformed

configuration l.

The displacements ustr, the linear and angular vibrational velocities of each blade

section and the ClL matrices are updated at every time-step of the ODE solution

of the structural model. These updated variables are key to the feedback between

the structural and aerodynamic models. It should be pointed out that the flow of

information from the aerodynamic to the structural side is in terms of forces acting

on blade sections resulting from aerodynamic loads. These are distributed forces

resulting from lift, drag and aerodynamic pitching moment on the airfoil sections.

These numerical schemes work as part of a multi-physics ODE solver called the

Common Ordinary Differential Equation Framework (CODEF) [8].In addition to the

aeroelastic model (CODEF)incorporates several modules to include the effects of con-

trol system dynamics and also of electromechanical devices on the drive-train. Such

an integral multi-physics modeling tool using an ODE solution in time could include

other aspects that affect rotor dynamics, simply by adding another module to the
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Figure 2.5: Flow-chart diagram of the Common ODE Framework.

flexible (CODEF) framework.

2.3 The common ODE framework (CODEF)

As explained in the previous paragraph, the 1-D beam problem is solved us-

ing a nonlinear adaptive ODE solver. The ODE solver is essentially a variable-

timestep/variable-order algorithm which by monitoring the local truncation error at

each timestep, improves the efficiency and stability of the time marching numerical

scheme. As mentioned earlier, the control system dynamics and electromechanical de-

vice dynamics can be added to the (CODEF) simply as new modules consisting of the
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differential equations representing their dynamic behaviour. This way more compo-

nents to the feedback system already present in the aeroelastic model can be addded

in the form of modifications to the boundary conditions of each component/module

of the (CODEF). A nonlinear adaptive ODE algorithm as a common framework is,

therefore, ideal for integrating all the dynamic components of a wind turbine rotor.

Figure 2.5 shows a flow-chart diagram of the global (CODEF) outlining the interre-

lations between different modules. These modules may each be explored and worked

on individually, thereby, simplifying further development of the code by the improve-

ment and/or expansion of each individual module independently. The (CODEF),

thus, allows for the addition of innovative control strategies along with all physical

aspects of wind turbine dynamics (electrical or mechanical) to the aeroelastic analy-

sis using a self adaptive ODE algorithm. This modular approach is perfectly suited

for interconnecting the dynamics of an individual turbine into a model that simu-

lates the dynamics of a wind-farm, including not just turbine-to-turbine aerodynamic

interaction but also electrical, and collective control of the entire farm.

Before getting into the DRD-BEM procedure it is important to first understand the

standard BEM model in detail.
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2.4 Blade Element Momentum Model

As mentioned in the introduction to this chapter there are two major distinct ap-

proaches to modeling a HAWT - the stream-tube approach and the vortex modeling

approach. In the vortex modelling approach the blades along with their wakes are

replaced by their vortex representations and the flow across the turbine as well as in

the wake is solved as a potential flow problem. The Stream-Tube approach involves

performing a momentum balance across one or more stream-tubes enclosing the rotor

area. The Blade Element Momentum (BEM) model is the most widely used mod-

eling approach for HAWTs, and as mentioned in the introduction, that is what this

dissertation focuses on. In this chapter the theoretical basis of BEM is elaborated

upon followed by a detailed explanation of the DRD-BEM algorithm.

The Blade Element Momentum theory, also called BEM, proposed almost a century

ago [4, 42], is still the preferred aerodynamic component for analyzing wind turbines.

There have been several improvements and corrections to the classical BEM technique

but the basic theory still remains the same. BEM has its origins in the blade element

and the momentum theories. In the momentum theory the change in momentum

across an annular stream tube of the rotor is essentially attributed to the aerody-

namic lift and drag forces acting on the blade element at that annular region. These

forces are obtained by the blade element theory, and hence the name Blade Element
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Figure 2.6: Schematic representation of the pressure and velocity drop across a
1-D Actuator Disk model and the corresponding wake expansion.

Momentum theory. The next two sections tackle each component of the BEM theory

individually before bringing them together to form the Blade Element Momentum

model.

2.4.1 The 1-D Actuator Disk theory

The momentum theory finds it origins in the axial momentum theory as an actuator

disk model first proposed by Rankine [52] and elaborated upon by W. Froude [53] and

R.E. Froude [54]. In its simplest form an actuator disk model consists of a circular
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actuator disk replacing the wind turbine. As seen in figure 2.6, as the wind flows

across the disk, it is gradually slowed down by the actuator disk while there is a

discontinuous drop in pressure across it. Assuming only axial flow, with no rotational

component there are two ways to find the thrust acting on the disk as a result of the

flow. The drop in velocity from far upstream to far downstream (i.e. between regions

1 and 4 in figure 2.6) can be used to find the change in momentum due to the thrust

T exerted by the disk on the wind.

T = ṁ(W1 −W4) = ρAWD(W1 −W4) (2.1)

Where, ρ is the density of air and A is the area of the actuator disk

On the other hand the pressure difference across the disk results in a thrust given by

T = A(p2 − p3) (2.2)

On applying the Bernoulli equation between regions 1 and 2 and again between regions

3 and 4 (and therefore not including the disk) equation 2.2 can be written as

T = 0.5 ρA(W1
2 −W4

2) (2.3)
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Equations 2.2 and 2.3 give

WD = 0.5(W1 +W4) (2.4)

An axial induction factor a can be defined at this point in order to quantify the

influence of the disk on the wind as:

W1 −W2 = aW1 (2.5)

Then by equation 2.4

W1 −W4 = 2 aW1 (2.6)

This when introduced into equation 2.3 for thrust gives

T = 2 ρAW1
2(1− a) (2.7)
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Figure 2.7: Annular stream-tube model with rotation of flow behind rotor.

2.4.2 The General Momentum Theory

For the general momentum theory an annular stream-tube model of the actuator disk

is used. Figure 2.7 shows an annular stream-tube of thickness δr at a distance r

from the center of the actuator disk. Unlike the axial momentum theory, here the

rotational motion in the slipstream is included. Let Ω be the angular velocity of

the turbine and ω be the angular velocity imparted to the wind as it flows across

the turbine. Therefore, the angular velocity of flow relative to the turbine blades

increases to (Ω+ω) downstream of the turbine. Applying Bernoulli’s equation to the
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flow relative to the moving turbine blades the increase in pressure across the disk is

given by:

p2 − p3 = ρ(Ω +
1

2
ω)r2ω (2.8)

The thrust and torques as a result of this additional rotational component are given

by:

δT = δA(p2 − p3) = 2 π r δr[ρ(Ω +
1

2
ω)r2ω] (2.9)

δQ = ṁstrip r
2ω = 2 π r δr r2ω ρW2 (2.10)

Where, δA represents the area of the annular region and ṁstrip is the mass flow rate

through the annular strip.

Assuming that the tangential velocity induced at the rotor plane is given by Ω r a′

and that induced velocity downstream of the rotor is given by 2Ω r a′ where a′ is the

tangential induction factor representing the increase in relative tangential velocity in

the blades cross-section due to wake rotation and is given by
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a′ = Ω/2 π (2.11)

The expression for the thrust can now be written as

δT = 4 π r δr r2 ρΩ2(1 + a′)a′ (2.12)

A careful examination of this expression for thrust reveals that it has a component

of pressure drop added to it in excess of the static pressure drop seen in equation ref

in the axial momentum theory. This drop in pressure given by:

∆p = 2 ρ r2 Ω2 a′2 (2.13)

accounts for the kinetic energy of the rotating fluid and will later be used as an added

term in the axial momentum balance [2].

2.4.3 Blade Element Theory

The thrust and torque in the general momentum theory was calculated for an annular

strip in the actuator disk representing the turbine rotor. The blade element theory
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Figure 2.8: The annular ring swept out by the blade element element shown on
the figure of the blade on the right at distance r from the hub as it rotates at an
angular velocity Ω.

aims at finding the forces acting on a blade element of the rotor at that radius (r

in the case explained in the previous section) with thickness δr. This is done by

assuming that the aerodynamic forces acting on a blade element can be described

by using the 2-D airfoil characteristics of the airfoil profile at that section. This is

schematically explained in figure 2.8. These characteristics are obtained based on the

angle of attack resulting from the resultant velocity of incident wind at that section.

From figure ref it can be seen that the relative velocity at the blade section is given

by:
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Figure 2.9: Velocities, forces and definitions of relevant angles on a blade element.

Wrel =

√

(W∞(1− a))2 + (Ω r(1 + a′))2, (2.14)

And the angle of incidence φ of this velocity is given by: sin φ = [W∞(1 − a)]/Wrel

and cos φ = [rΩ(1 + a′)]/Wrel
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The angle θp (the section pitch angle) together with the angle of relative wind φ give

the angle of attack α as:

α = φ− θp (2.15)

using this α the lift and drag coefficients Cl and Cd at the blade section can be

obtained from the aerodynamic data for the airfoil profile at that section. The lift

force δFL normal to the relative wind velocity and the drag δFD acting along the

relative wind are obtained from these coefficients by the following relations:

δFL =
1

2
ρ cWrel

2Cl δr (2.16)

δFD =
1

2
ρ cWrel

2Cd δr (2.17)

Where ρ is the air density, c is chord length and δr is the spanwise thickness of the

blade element.

Based on these forces the total axial thrust δT and the torque δQ on the annular ring

at a radius r for a turbine with B number of blades is given by:

δT = δL cosφ+ δD sinφ =
1

2
ρ cBWrel

2(Cl cosφ+ Cd sinφ)δr (2.18)
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δQ = (δL sinφ− δD cosφ)r =
1

2
ρ cBWrel

2(Cl sinφ− Cd cosφ)r δr (2.19)

2.4.4 Blade Element Momentum Theory

As explained in the introduction to this chapter, in the Blade Element Momentum

(BEM) Theory rate of change in momentum across the annular sections of the rotor

is equated to the forces acting on that section as obtained by the blade element

theory explained above. As long the distribution of circulation over the blade is fairly

uniform ensuring a concentration of vortices shed mostly at the root and the tips [40],

the general momentum theory explained above works with the assumption that each

annular strip can be analyzed independently. Also, as the wake behind the turbine

expands the interaction between the vortices shed is somewhat negated and therefore,

this assumption works better for turbines than for propellers [40]. As far as the blade

element theory is concerned spanwise flow is ignored and the airfoil data obtained

from 2-D airfoil tests are used. This assumption gains importance when the blade is

no longer perpendicular to the axis of rotation and forms the crux of this dissertation

as will be elaborated upon in subsequent chapters. The basis of BEM is to relate the

local induction factors of axial and tangential velocities to the coefficient of thrust at

that rotor section. And this is done by essentially performing a momentum balance

in the axial and tangential directions at all of the annular stream-tube that together
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Figure 2.10: The annular strip on which the effect of forces at the blade element
are assumed to have an affect for BEM analysis.

comprise the rotor disk. Looking at figure 2.10, if blade 1 is to analyzed the force

acting on this blade at that section is assumed to have an affect on the wind flowing

across the entire shaded region [55].

Using equation 2.7 the axial thrust on this shaded region can be used to define the rate
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of change of axial momentum with area of the annular strip given by δA = 2 π r δr

for a turbine with B number of blades.

δT =
2 π r δr

B
ρW∞

2 2a(1− a) (2.20)

However, as mentioned in section 2.4.2 equation 2.13, the additional drop in static

pressure must be accounted for and that is done by adding the following axial force on

the annulus based on the explanation found in [2] 0.5 ρ(2 a′ Ω r)2 2 π r δr. This gives

the new equation for the rate of change of axial momentum as

δT =
4 π r δr

B
ρ (W∞

2 a(1− a) + (a′Ω r)2) (2.21)

Similarly the rate of change of tangential momentum can be defined by the torque

acting on that annular strip as:

δQ =
4 π r2 δr

B
ρW∞ (1− a)rΩ a′ (2.22)

Going back to figure 2.8, the figure on the right represents blade 1 and the airfoil at

radius r has been drawn as a section within the blade for clarity. The forces acting

37



www.manaraa.com

on this blade element have been shown in detail in figure 2.9. Therefore using the

equations 2.18 and 2.19, the thrust and torque from the blade element theory can be

equated to the rate of change in axial and tangential momentum of equations 2.21

and 2.22 to give

1

2
ρ cWrel

2(Cl cosφ+ Cd sinφ)δr =
4 π r δr

B
ρ (W∞

2 a(1− a) + (a′Ω r)2) (2.23)

1

2
ρ cWrel

2(Cl sinφ− Cd cosφ)r δr =
4 π r2 δr

B
ρW∞ (1− a)rΩ a′ (2.24)

As mentioned earlier in this section, these equations are iteratively solved to relate

the local thrust coefficient to the local induction factors. The iterative procedure

used in this research builds on the Dynamic Rotor Deformation - BEM or the DRD-

BEM method which will be described in the following section. There are a number

of corrections applied to this procedure to account for the various assumptions men-

tioned earlier. These corrections will be explained in the context of the DRD-BEM

procedure

The following sections provide a detailed explanation of the standard DRD-BEM

model, thereby, providing the necessary context to the crux of this dissertation.
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Tilt angle

Wind
Shaft

Cone angle

Rotor plane

Figure 2.11: Cone angle θcn and tilt angle θtlt for upwind turbines, as given by
the International Electrotechnical Commission (IEC) standards [3]

2.4.5 DRD-BEM procedure

The algorithmic sequence followed by the DRD-BEM model is as follows:

2.4.5.1 Applying the induction factor on the undisturbed wind

Velocity vector, Wh, through an annular actuator in the hub coordinate system h

can be written as,

Wh =

















W∞hx
(1− a)

W∞hy
+ Ω rha

′

W∞hz

















, (2.25)
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where a is the axial induction factor representing the deficit in wind velocity in the

axial direction and a′ is the tangential induction factor representing an increase in

the tangential component of wind velocity as flows across the actuator. W∞h is the

undisturbed wind velocity in the h (hub) coordinate system (figure 2.2), Ω is the

angular velocity of the rotor, and rh is the instantaneous radial distance of a section

of the blade from the hub in the h (hub) coordinate system (see figure 2.1). This three

dimensional representation of Wh shows how an annular stream-tube corresponding

to a certain blade element gets deflected by the forces exerted on it by the associated

annular actuator. Misalignments like tilt, yaw, changes in wind direction etc. are also

taken into account by orthogonal matrices which effectively transform the undisturbed

incoming velocity represented in the wind coordinate system into W∞h. The first of

the set of orthogonal matrices acting on W∞wind is C∆θyaw which takes into account

misalignments between wind direction and nacelle orientation representing a rotation

around the vertical axis.

C∆θyaw =

















cos(−∆θyaw) sin(−∆θyaw) 0

− sin(−∆θyaw) cos(−∆θyaw) 0

0 0 1

















, (2.26)

where ∆θyaw = θyaw − θ∞, with the nacelle orientation given by θyaw and the undis-

turbed wind direction is given by θ∞. The negative sign is because ∆θyaw is defined

positive counter-clockwise according to (TS 61400-13 EIC:2001), and θyaw as well as
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θ∞ are defined positive clockwise from the North as in a compass rose. The misalign-

ment in the vertical direction brought about by tilt as defined by IEC standards [3] is

accounted for by Cθtlt (figure 2.11). Finally, the orthogonal matrix Cθaz rotates the

blade around the main shaft to bring it to its new instantaneous azimuthal position,

thereby, transforming the wind velocity into the hub coordinate system h. Thus, the

undisturbed wind velocity in the hub coordinate system is given by:

W∞h =
(

CθazCθtltC∆θyawW∞wind

)

. (2.27)

2.4.5.2 projecting the Velocity vector so obtained onto the instantaneous

coordinate system of the deformed blade section

Wh obtained in the previous step is projected on to the coordinate system of deformed

blade section through more coordinate transformations. First is the transformation

matrix Cθcn which takes into account rotor coning (see figure 2.11).

This could be a fixed angle for a pre-coned rotor or as a control mechanism which

changes the coning angle by using a variable matrix reflecting said action instanta-

neuosly. A detailed description of the concept of coning rotors is given in Jamieson

[17], Crawford and Platts [18], Crawford [22]. Next is the pitching transformation

matrix Cθp which represents a rotation around the blade’s pitching axis i.e. the third
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zb

xb
yb

wind

Figure 2.12: The Blade coordinate system as defined by the International Elec-
trotechnical Commission (IEC) standards [3]

axis of the coordinate system obtained in the previous step which accounted for coning

. This gives the blade coordinate system. The blade coordinate system is represented

by the subscript b as per IEC standards [3] (see figure 2.12).

Cθp =

















cos(−θp) sin(−θp) 0

− sin(−θp) cos(−θp) 0

0 0 1

















, (2.28)

Here the pitch angle θp = θp0 + θpctrl , where, θp0 is hte pre-set fixed pitch, while θpctrl

can be varied by the control system. The negative sign is for the sense in which the

positive pitch angles are defined in IEC standards. This Combination of a fixed angle
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with a changing control angle can also be applied to Cθtlt in case tilting is used as

a control mechanism. As mentioned in the explanation for CODEF, the DRD-BEM

can interact with control modules, hence, the projection matrices for these actions

must be updated at every instant of the solution. As an example, Cθaz , will not

only compute instantaneous blade position, but also reflect control actions which can

affect the angular speed Ω of the rotor.

The beam axis in its original configuration is represented by the reference line, L, and

is not always aligned with the third axis of coordinate system b shown in figure 2.12.

This is because of the possiblity of pre-conformed curvatures introduced during blade

manufacture as part of blade design. The orthogonal matrix CLb, computed along

L, at each location of analysis, relates the b coordinate system, with the intrinsic

coordinate system of the the non-deformed blade section configuration (xL, yL, zL)

defined along L. Finally, the orthogonal matrix ClL is provided by the solution of

the kinematic equations on the structural model (as explained in section 2.2). This

matrix transforms all necessary vectors from L coordinate system to the deformed

blade section coordinate system l.

After projecting the velocity vector Wh onto the blade section coordinate system,

vstr and vmech are added to it. vstr is the vibrational velocities at the blade section

as obtained by the structural model while vmech are the velocities associated with the

combined action of mechanical devices (like yaw, pitch, and azimuthal rotation) on
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the blade section. Thus, the velocity of relative wind, Wl, at the blade section is:

Wl =
(

ClLCLbCθpCθcnWh

)

+ vstr + vmech. (2.29)

2.4.5.3 Using the Blade Element Theory to obtain the aerodyanmic forces

on the blade section

Using the magnitude of the relative wind velocity in the plane of the blade section,

Wrel =
√

Wlx
2 +Wly

2, and the corresponding angle of attack α, the associated lift

and drag forces per unit length of span can be estimated by:

dFlift =
1

2
ρCl W

2

rel c , dFdrag =
1

2
ρCd W

2

rel c, (2.30)

where Cl and Cd represent the lift and drag coefficients for the corresponding angle of

attack, ρ stands for air density, and c is the chord length of the airfoil at that blade

section. The net aerodynamic load acting on the blade element of span δl (figure 2.1)

aligned with the relative wind is given by

δFrel =

















dFlift

dFdrag

0

















δl, (2.31)
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2.4.5.4 Projecting the aerodynamic forces back onto the hub coordinate

system

The force vector δFrel is projected back onto the h coordinate system by

Fh = CT
θcn

CT
θp
CT

LbC
T
lLCLthal dFrel δl, (2.32)

where CLthal projects the lift and drag from the Lilenthal system onto the l coordinate

system (aligned with the chord-normal and chord-wise directions of the airfoil). The

above expression can also be written as Fh = dFh δl, or as

Fh =

















δFhx

δFhy

δFhz

















=

















dFhx

dFhy

dFhz

















δl, (2.33)

where dFh = CT
θcn

CT
θp
CT

LbC
T
lLCLthal dFrel.
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2.4.5.5 Equating the forces from Blade Element Theory to those obtained

by the Momentum Theory

Components of force vector Fh are equated to the rate of change of momentum

of the wind as it flows across the corresponding annular actuator. First, the axial

component δFhx
, normal to the axis of the annular actuator, is equated to the rate of

change in momentum of W∞hx
corresponding to the axial interference factor a (see

expression 2.25), giving

dFhx
= fth

4π ρ rh
B

(

W 2

∞hx
a (1− a) + (a′Ω rh)

2
) δrh

δl
, (2.34)

where fth represents the tip and hub loss factors explained in some detail in sec-

tion 2.4.6, and B represents the number of blades. The term (a′Ω rh)
2, as explained

in detail in the dscussion on BEM theory, is added to account for pressure drop be-

hind the actuator. δrh
δl

is added to transform δl into δrh using the same orthogonal

matrices as earlier. In the same fashion, δFhy
, is equated to the rate of change in

momentum associated with the tangential induction factor a′ as

dFhy
= fth

4π ρ rh
B

|W∞hx
| (1− a) (Ω rh) a

′
δrh
δl

. (2.35)
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2.4.5.6 Using an iterative minimization algorithm to solve for the induc-

tion factors

Equations (2.34) and (2.35) form a nonlinear system of equations where both a and a′

are unknown. In classical BEM, this is solved by functional iteration schemes which

start at an initial guess value for each blade element. However, since DRD-BEM

is a more complex model, it uses an advanced optimization algorithm making the

iterative process faster and more stable.First a set of implicit expressions for a and

a′ are derived as:

aRes = dFhx
− fth

4π ρ rh
B

(

W 2

∞hx
a (1− a) + (a′Ω rh)

2
) δrh

δl
, (2.36)

a′ =
dFhy

B

fth 4π ρ rh |W∞hx
| (1− a) (Ω rh)

δrh
δl

(2.37)

A minimization of aRes in equation (2.36) is done to obtain the axial induction factor

a, using an updated value of a′ from expression (2.37) at each iteration acting as

a constraint. The minimization process consists of an advanced adaptive algorithm

using a combination of bisection, secant, and inverse quadratic interpolation. This

ensures bracketing the search within an expected range. This helps avoid solution

overshoots, divergence or the possibility of getting trapped in infinite loops.
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2.4.5.7 Computation of the distributed aerodynamic loads

Once the the induction factors are computed, the aerodynamic forces can be calcu-

lated by repeating steps 2.4.5.1 to 2.4.5.3, but then projecting the forces obtained

in 2.4.5.3 onto the l coordinate system. This is done as follows

dFl = CLthal dFrel (2.38)

The first two components of dFl represent the aerodynamic loads in the chord-normal

and chord-wise directions. The aerodynamic moment per unit length of the span on

that airfoil section around the first axis of l, is given by

dMaer =
1

2
ρCm W 2

rel c
2 (2.39)

Cm represents the aerodynamic pitch coefficient of the airfoil for the angle of at-

tack at that section. These sectional aerodynamic loads are assembled to give the

distributed loads on the blade. The effect of gravitational loads on the distributed

forces and moments is also taken into account for the instantaneous position and at-

titude of each blade section. This is done using the inertia properties obtained from

the dimensionally-reduced inertia matrix contructed for the equivalent beam as ex-

plained in section 2.2. These forces act as the input for the GTBM structural model

(see section 2.2).
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2.4.6 Dynamically updating the corrective factors used in

BEM models

Unlike classical BEM where the corrective factors were computed at the begining and

then kept constant throughout the calculation, in DRD-BEM they are updated at

every iteration:

† Aerodynamic data for each of the airfoils as obtained from static wind-tunnel

tests are dynamically corrected to include rotational-augmentation (based on

models of Du and Selig [56] and Eggers [57]) and dynamic-stall (based on the

works of G. and S. [48], Leishman et al. [58] and Leishman and Beddoes [59])

effects.

† Multiple data tables , each consisting of aerodynamic coefficients of different

airfoils. Each set of data can be associated with various factors effecting aerody-

namic properties of airfoil from varying Reynolds number to adding flow control

devices . The exact values of aerodynamic properties can then be interpolated

from the appropriate table and accordingly updated.

† The Vieterna extrapolation was proposed by Viterna and Janetzke [60] to extend

the aerodynamic data availability for a wide range of angles of attack ±180◦.
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The following empirical corrections typically seen in most current implementations of

BEM models ([see 2, 43]), have also been included in DRD-BEM:

† The tip-loss and hub-loss factor fth in equations (2.34) to (2.37) correcting the

induced velocity due to vortex shedding from the tip and root of each blade,

not accounted for by BEM theory.

To account for the difference in flow dynamics between an actuator disk repre-

senting essentially an infinitely bladed rotor and an actual turbine with finite

number of blades, Prandtl introduced the tip-loss factor. With a finite number

of blades, the circulation around the blade has to decrease continuously to zero

towards the tip, because of the possibility of a cross-flow around the tip, which

decreases the pressure difference between upper and lower side of the tip profile.

This effect is analogous to that of an airplane wing of finite span, but the vor-

tex calculations are more complex in case of a wind turbine. The model must

include the effect of interaction of vortices shed by rotor blades with the flow.

The most basic definition of tip losses is given as the ratio of circulation of ΓB

for a rotor with B blades to the circulation for an infinitely bladed rotor disk

given by Γ∞ The DRD-BEM algorithm included a factor fth to account for these

interactions which have a significant influence on the thrust and torque output

of the rotor. The factor used in DRD-BEM accounts for both tip and hub losses

since vortices are also shed at the root of the blade and their interaction with
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the wake must also be accounted for.

Prandtl [61] estimated this ”tip-loss” effect for a lightly loaded rotor with negli-

gible wake expansion. He considered the helical vortex sheets behind the turbine

to be rigid planes moving with a velocity equal to the axial induced velocity

aW∞ with respect to the undisturbed external flow. He simplified this by con-

sidering these ’flat plates’ to be equidistant. He then went on to solve it as a

potential flow problem of flow around semi-infinite plates. A conformal mapping

was used to solve this problem and find the reduction in potential difference be-

tween two plates approaching the tip. This reduction was assumed to represent

the reduction of the circulation around the rotor blade. The reduction factor

for a turbine of radius R and B blades at radius r from the hub was found by

Prandtl to be

F =
2

π
cos−1

[

exp

(

−
B(R− r)

2RsinφR

)]

(2.40)

Where, φR is called the helix angle and defined as the angle made by the relative

wind with plane of rotation at rotor tip.

Goldstein found the exact solution to flow problem about a lightly-loaded op-

timum rotor with a non-expanding wake using Bessel functions .This was com-

pared with Prandtl’s solution showing that the Prandtl’s solution was very close

to that of Goldstein’s at high tip-speed ratios, and there was some amount of

qualitative similarity at all tip-speed ratios. However, since an expanding wind
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turbine wake is different from the constant-diameter wake of an optimum pro-

peller, it is not apparent which model is more accurate [40]. It also important

to realize that Glauert interpreted this tip loss factor not as a ratio of circu-

lations but as a ratio of the average induced velocity at the annulus and the

induced velocity at the blades. This was basically to simplify its application to

BEM, without actually changing the expression. He also made this expression

compatible with BEM by using the tip loss factor not for the entire rotor disk,

but for each section of the blade in accordance with the strip theory approach

of BEM. For this he used what can be termed as a local flow angle approach

with the helix angle or the flow angle φR at the tip is replaced by the local flow

angle φtaken at each section instead of the tip.

† the models developed by Bak et al. [62] and Powles [63], incorporate tower

influence on the local velocity field.

† BEM theory uses an empirical relation for thrust on the annular actuator instead

of a momentum balance when the section representing the actuator operates at

or beyond the so called ”turbulent-wake” state. At a = 0.5, the parabola in

figure 2.13, which represents the thrust coefficient CT as a function of a reaches

its peak value. Beyond a = 0.5, part of the flow in the far wake begins to

propagate upstream and so the basic assumptions of momentum theory on a

stream-tube do not hold. Hence, this relation is essential for high tip speed ratio
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Figure 2.13: Thrust coefficient CT plotted against the axial induction factor
a. The resulting parabola is a representation of the Momentum theory applied to
a stream-tube in a typical BEM model; The empirical relations of Glauert [4] and
Buhl [5] fitting data from experiments performed by Lock and Townend [6] and
Munk [7] are also shown; lso added is the Power-Law fitting developed by Ponta
et al. [8]. The parabolic CT curve shown here inlcudes the effect of tip-hub loss
factor fth = 0.9 to highlight the problem of discontinuity seen in Glauert’s approach.

turbines for which the possibility of a going beyond 0.5 is quite high(for practi-

cal cases this value is generally taken to lie between 0.3 to 0.45). Glauert [4] was

the first to propose such an empirical relation in the form of a fitted parabola.

The parabola was fitted to data obtained from experiments performed on pro-

pellers by Lock and Townend [6]. Figure 2.13 shows that Glauert’s function is

tangent to the CT curve at a = 0.4. Others have proposed similar curves like

Wilson [40] and Burton et al. However, if tip and hub losses are taken into

consideration, the fitting curve is no longer tangent to the CT function. This

results in a discontinuity at the point where the model must switch from using

the momentum equation to using the empirical relation [5]. This can cause a

problem during the iterative process solving for the induction factors, making
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convergence difficult. Buhl [5] proposed using an empirical relation which forces

the two curves to be tangential, whether or not the tip and hub losses are taken

into account. The DRD-BEM model has the flexibility to switch between any

of these models. More importantly, DRD-BEM has also incorporated a new

Power-Law fitting [8]. This new curve significantly reduces the error in approx-

imation compared to the experimental data. It also avoids any discontinuity

since the Power-Law fitting always intercepts the stream-tube CT function in

spite of the tip and hub loss corrections. This is another aspect of the BEM

model that will be further explored in this dissertation.

A more comprehensive description of the standard DRD-BEM model can be found

inPonta et al. [8] and the references therein. For the structural model thereader

is referred to Otero and Ponta [29], which also includes the analysis of vibrational

modes of composite laminate wind-turbine blades using the standard DRD-BEM

model. Section 3 of Ponta et al. [8] presents results validating the standard DRD-

BEM model with respect to the detailed results provided in Jonkman et al. [41] and

Xudong et al. [64].

Inspite of all the modifications mentioned above owing to the two dimensional nature

of the blade element theory, the force exerted in the radial direction by the rotor on

the wind as it flows across it is not accounted for. As mentioned on several occasions,

as the extent of rotor deformation out of the plane of rotation increases, the effect of
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radial forces on the blade elements increases leading to the development of the 3-D

DRD-BEM model which will be introduced in the next chapter.
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Chapter 3

A 3-Dimensional DRD-BEM model

The 3-D DRD-BEM model aims at improving the accuracy with which to represent

the forces involved in deflecting the stream-tube across the actuator disk for each

blade section. Currently BEM, in all its implementations, takes into consideration

the axial and tangential forces acting on the stream-tube, but not the radial compo-

nent. The same is the case with DRD-BEM as shown in steps 2.4.5.4 to 2.4.5.5. In

equation (2.32) the aerodynamic chord-wise and chord-normal forces acting on the

blade section, represented by δFrel, are projected from the coordinate system of the

blade section to that of the hub giving δFh. The force component in radial direc-

tion of the rotor plane (the plane where the annular actuator lies) is given by δFhz

(see equation (2.33)). However, while equating δFh obtained by the blade element

theory to the rate of change in momentum across the actuator in equations (2.34)
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and (2.35), while the axial and tangential forces are accounted for,the radial force

δFhz
is considered negligible. These radial forces are no longer negligible as blade

flexibilty increases as does the misalignment of blade sections with the plane of rota-

tion. This misalignment can also be caused by control actions. Therefore, it becomes

important to include the radial component in the momentum balance for a complete

representation of the 3-Dimensional interference of wind across the annular actuator.

One way to achieve this would be to add to the equations (2.34) and (2.35), another

equation balancing the rate of change of radial momentum across the annulus. This

could be done by adding another induction factor accounting for the change in the

radial component of velocity due to the radial force on the stream-tube. However,

this makes the coupling between axial and tangential induction factors more compli-

cated. The robust and proven 2 equation iterative algorithm used so judiciously in

the solution for the axial and tangential induction factors will have to be abandoned.

A less complicated approach would be to implement the momentum balance in a

coordinate system that aligns with the blade section in the deformed configuration.

As seen in equation (2.31), δFrel has no span-wise component and since CLthal rotates

around the spanwise z-axis, Fl will have no components in the span-wise direction

either. The fact that the forces on an airfoil are represented by two components

without a spanwise component is a consequence of the blade element theory. This

ensures that the 3-Dimensional effects on interference induced by the radial forces,
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as seen in the plane of rotation, is fully accounted for. Therefore the contribution of

radial component will remain intact across the entire transformation between blade

section and hub coordinate systems. An obvious advantage of such an approach

is that while a 3-Dimensional interference pattern is obtained, the robust iteration

procedure, used in the DRD-BEM method, can still be used since the aerodynamic

force on the blade element still has only two components.

3.1 Extending the DRD-BEM to include 3-

Dimensional interference

The above mentioned approach to obtain a 3-Dimensional interference pattern across

the annular actuator, steps 2.4.5.1 to 2.4.5.6 will have to be reformulated. In order

to understand the relationship between the blade element and the annular actuator

representing that element, it would be helpful to refer to figure 2.1 just as was done

while looking at the the DRD-BEM algorithm.

3.1.1 Modifying incoming wind across the annular actuator

As the undisturbed wind, W∞wind 2.1, flows across the annular actuator, instead

of being projected onto the hub coordinate system, it is directly projected onto the
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instantaneous coordinate system of the blade section, as follows

W∞l = ClLCLbCθpCθcnCθazCθtltC∆θyawW∞wind, (3.1)

Here the orthogonal matrices perform the same coordinate system transformations

as explained in DRD-BEM. Wind velocity, Wlint
, obtained after interference by the

annular actuator when aligned with the coordinate system of the deformed blade

section is given by,

Wlint
=

















W∞lx(1− a
l
)

W∞ly + Ω rhal

′

W∞lz

















, (3.2)

where a
l
and a

l

′, are, respectively, the induction factors representing the velocity

fraction induced in the chord-normal and chord-wise directions of the airfoil section

in the deformed configuration.

In accordance with equation (2.29) shown in section 2.4.5 we need to add toWlint
, the

velocity components vstr and vmech giving the velocity relative to the blade section

as:

60



www.manaraa.com

Wl = Wlint
+ vstr + vmech. (3.3)

3.1.2 Projecting forces obtained by using the Blade Element

Theory from the Lilenthal coordinate system to the

blade section coordinate system

Following the same procedure as seen in Steps 2.4.5.3 and 2.4.5.4 the drag and lift

forces are computed according to equation (2.30), giving the same δFrel as that in

equation (2.31). δFrel is further projected onto the blade section coordinate system

by

Fl = CLthal dFrel δl, (3.4)

where CLthal is the orthogonal matrix which projects the aerodynamic forces (lift and

drag) on to the blade section coordinate system i.e. the coordinate system aligned

with the coordinates of reference line l. Since CLthal rotates the forces about the

z-axis, the corresponding component of dFrel in the z direction remains zero after the

projection shown in equation (3.4).Therefore, Fl can now be written as

Fl =

















δFlx

δFly

0

















=

















dFlx

dFly

0

















δl, (3.5)
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where dFl = CLthal dFrel. dFlx and dFly are the forces in chord-normal and chord-

wise directions. These two components which will be used next for the momentum

balance in the axial and tangential directions of the blade section coordinate system.

3.1.3 Equating the forces obtained from Blade Element The-

ory with those from the Momentum Theory

In 3-D DRD-BEM the momentum balance, unlike step 2.4.5.5, is now carried out

in the blade section coordinate system. As explained earlier, only the chord-normal

and chord-wise forces are considered in the BE theory, while the span-wise forces

are assumed to be negligible. This ensures an aerodynamic interference which can

still be represented by 2 interference factors, this time in the deformed blade section

coordinate system. just as in equation (2.34), the axial component, δFlx , is equated

to the momentum change on W∞lx associated with the axial interference factor a
l
to

give

dFlx = fth
4π ρ rh

B

(

|W∞lx | (1− a
l
)W∞lx al

+ (a
l

′Ω rh)
2
)

(3.6)

in addition to the change in velocity and force components, the other changes in

equation 3.6 with respect to equation (2.34), are the absence of the factor δrh
δl

and
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the splitting up of W 2

∞lx
. δrh

δl
accounted for the fact that the blade element length

(corresponding to the thickness of the annular actuator) must be projected from the

blade section coordinate system to the hub-coordinate system. This is not required

anymore, as the actuator is no longer in the hub coordinate system but is instead

already in the blade section coordinate system. W 2

∞lx
is split up to account for cases

involving a relative wind velocity from the downwind side. Finally, the momentum

change associated with the tangential induction factor a
l

′ is equated with the tangen-

tial force component δFly as follows

dFly = fth
4π ρ rh

B
|W∞lx | (1− a

l
) a

l

′(Ω rh) (3.7)

3.1.4 Iterative process for calculating the induction factors

The iteration scheme used here is the same as that used in DRD-BEM. Similar to the

process followed for a and a′ the expression for a
l
and a′

l
can be written in an implicit

way as

alRes
= dFlx − fth

4π ρ rh
B

(

|W∞lx | (1− a
l
)W∞lx al

+ (a
l

′Ω rh)
2
)

(3.8)
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a′ =
dFhy

B

fth 4π ρ rh |W∞lx | (1− a
l
) Ω rh

(3.9)

Finally, alRes
in (3.8) is minimized with the help of the adaptive algorithm explained

earlier in step 2.4.5.6. Thus, the convergence criteria and error is, once again, moni-

tored constantly by an efficient and extremely reliable numerical scheme [65, 66].

3.1.5 Computing the distributed loads on the blade

Steps 3.1.1 and 3.1.2 are repeated using the just calculated induction factors to find

the aerodynamic load, dFl, on each of the blade sections is calculated following.

Finally as done in step 2.4.5.7, the aerodynamic moment as well as the gravitational

loads are addded to the distributed forces and moments.

The corrective factors are implemented in exactly the same fashion as seen in the

DRD-BEM model. It is important to point out that the tip loss correction is im-

plemented in the same coordinate system as was done in DRD-BEM. This was done

keeping in mind the derivation of the expression for the tip losses by Prandtl was

done with the flow angle defined as that between relative wind and blade tip in the

plane of rotation (see the Tip loss factors explained in section 2.4.6). The next chap-

ter describes the numerical experiments performed to validate the 3-D DRD-BEM

model. The chapter includes a detailed discussion of results of the said experiments
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including a comparison with the results obtained using the DRD-BEM model.
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Chapter 4

Numerical Experiments on 3-D

DRD-BEM

In this chapter, results of the implementation of the 3-D DRD-BEM model for the

aerodynamic analysis of a model 5-MW Reference Wind Turbine (RWT) proposed by

NREL [41] are presented. This model rotor is based on the REpower 5M wind turbine

and was designed as a benchmark turbine for onshore as well as offshore installations.

It is a good representation of state-of-the-art, utility-scale, multi-megawatt commer-

cial turbines. The results are compared against those of the standard DRD-BEM

model. Based on the discussions in previous sections this new implementation comes

into its own when the out of plane deformation of the blade sections are significant.
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Keeping this in mind the numerical experiments presented in this chapter were de-

signed for a range of modifications of the NREL-RWT turbine. The modifications

consited of varying the hub-coning angle (θcn) from 0◦ to 20◦ and also stiffness of thge

blade from hyper-stiff to 60% more flexible than the standard one. To create a blade

which is hyper-stiff a standard blade’s stiffness was increased by a thousand timesin

order to create a rotor in which deformations were essentially negligible. This made

it easier to single out the effects of blade deformation on the interference patterns.

The reduction in flexibility, on the other hand, was brought about by a gradual re-

duction of the blade stiffness and blade mass of the standard NREL-RWT blade by

10%, 20%, 30%, 40%, 50% and 60%. These rotors with modified blades and varying

θcn are compared with the standard configuration. This is done for both the models

i.e. standard DRD-DEM as well as the 3-D DRD-BEM model. Tilt and gravitational

loads were not included in the initial experiments, essentially to use a steady-in-time

solution to help understand the effects of misalignments using an organized and step

by step process. Finally, tests including gravity and tilt were conducted (section 4.3).

The results show a definite improvement in the the new model’s ability to incorporate

the 3 dimensional interference of the rotor into the momentum equations.
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4.1 A 3-D interference pattern

In this section the effects of exchange of momentum in the radial direction of the

plane of the rotor is highlighted. The results presented here are based on Hyper-stiff

blades mentioned earlier with a conicity θcn of 10◦ and 20◦. As explained in the last

section, hyper-stiff blades will help single out the effects of out-of-plane deformations,

which in this case are being introduced artificially by the variation θcn.

The results shown in figure 4.1 represent the power coefficient CP as a function of

tip speed ratio λ. Results from the standard DRD-BEM model are depicted by dash

lines and those from the 3-D DRD-BEM model are represented by solid lines. As

expected, at a tip speed ratio of about 8 all of the cases attain the maximum power

that the turbine can extract. Looking at the plots, two important differences can

be seen in the results given by the standard model and the 3-D model. The first

thing that can be noticed is the drop in CP obtained by the 3-D DRD-BEM model.

This is because the new method includes the forces acting in the rotor planes radial

plane, thereby increasing interference and reducing the available flow kinetic energy.

The second significant difference is how the gap in the results obtained by the two

models increases with an increase in θcn from 10◦ to 20◦. This can be explained by the

expected increase in the contribution of radial forces as the extent of misalignment of

the blade sections with respect to the plane of rotation increases with increase in θcn.
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Figure 4.1: CP Vs λ for a coning angle θcn = 10◦ and θcn = 20◦. The dashed
lines represent the standard DRD-BEM model and the solid lines represent the 3-D
DRD-BEM model

The plots in figure 4.2 highlight the contribution of radial forces in a more direct

fashion. Figure 4.2 shows a comparison of the absolute value of the tangential in-

duction factor a′ as obtained both by the two models after projecting them onto

the h-coordinate system. A third induction factor a′′ is also added to the plots.

This induction factor represents the change in wind velocity in the radial direction

of the rotor plane. The figure on top represents θcn = 10◦ while the one below is for

θcn = 20◦.

It is worth mentioning that this third induction factor a′′ is not actually calculated in

the 3-D DRD-BEM model, since, as explained earlier introduction to 3, the momen-

tum equation is solved in the l coordinate system (also referred to as the deformed

blade section coordinate system) which is aligned with the deformed blade section.

Therefore, a need to solve for a third induction factor never arises in either of the
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Figure 4.2: a′ using the standard DRD-BEM (dashed lines) and the 3-D DRD-
BEM (solid lines) and a radial induction a′′ obtained by the 3-D DRD-BEM, as a
function of the normalized blade length L∗. All three induction factors are projected
on to the h-coordinate system. In the figure on top θcn = 10◦, while for the one
below θcn = 20◦

two models. Here, however, this induction factor was extracted specifically for high-

lighting the effect of radial forces with increasing levels of rotor misalignments. Thus,

this new “radial” induction factor illustrates how an annular section of the rotor acts

upon the incoming wind in the radial direction of the hub coordinate system.

Figure 4.2 shows that the tangential induction factors obtained by either method are
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Figure 4.3: Rotor power as a function of Tip-displacement xh. Dashed lines
represent standard DRD-BEM results and solid lines represent the 3-D DRD-BEM
results
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similar. The slight difference can be explained by a more general 3-D interference

pattern taken into account by 3-D DRD-BEM. The a′′, however, can be seen to play

a significant role in causing the divergence in CP values shown in figure 4.1. From the

two plots it can be seen that as far as the magnitude is concerned a′′ is comparable to

a′. Also, as θcn increases, the contribution of radial forces also increases, as evidenced

by a significant increase in a′′, which is now greater than a′ over a major portion of

the turbine blade.

4.2 Effect of misalignment on Rotor Power

For the plots shown in figure 4.3 only the aerodynamic loads were considered. This

was done to highlight the fact that the sensitivity of the 3-D DRD-BEM model

to aerodynamic loads increases when compared to the standard DRD-BEM model.

Figure 4.3 represents the power output of the rotor against the distance of the blade tip

from the plane of rotation along the x-axis of the h-coordinate system. The results are

shown for one blade since all three blades will follow the same steady-in-time response

over each cycle. As before, the 3-D DRD-BEM results are represented by solid lines

and the dashed lines for the standard DRD-BEM results. Power is plotted for blades

with increasing flexibity, beginning with the hyper-stiff blade followed by the standard

NREL-RWT blade and finally the set of six flexible blades defined earlier. The points

on the curves represent an increasing coning angle θcn. It starts at 0◦, followed by
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the design conicity of 2.5◦ and finally higher coning angles of 10◦ and 20◦. The x-

axis should, therefore, account for blade deformation as well as misalignment due to

varying θcn.

The first two curves in figure 4.3 are for the hyper-stiff blade. The standard DRD-

BEM results are represented, once again, by the dashed line and those of the 3-D

DRD-BEM model by the solid line. This scheme of solid and dashed lines is followed

in the remaining curves in the figure 4.3. The difference in results obtained by the

two models increases significantly for higher θcn. The point at xh = 0m represents

θcn = 0◦ and that at xh = −21.03m represents θcn = 20◦. This results from increasing

conicity leading to higher levels of rotor misalignment with the plane of rotation. With

increasing flexibility, a drop in rotor power can be noticed. This can be explained

by complex modes of deformation expected of flexible blades being better captured

by a more sensitive BEM model. Also, with the contribution of radial forces being

accounted for, the momentum lost in the radial direction is also accounted for, and

this takes away from the contribution of the momentum carried by incoming wind

to power output. Another important aspect seen in the plot is the relative difference

in power between the two models when θcn = 0◦. This difference clearly increases

with increase in rotor flexibility. This is due to the fact that more flexible blades will

deform more from the plane of rotation and hence the contribution of radial forces

will also increase. Therefore, the 3-D DRD-BEM model is better at capturing the

effects of out-of-plane attitude of blade sections. It can also be seen that, for power
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output at higher θcn, the gap between the two curves decreases at first. At first, for

the 3-D DRD-BEM results, the region between θcn = 2.5◦ and θcn = 10◦ flatten out as

flexibility increases. However, it finally begins to increase again. This is to be expected

since the misalignment due to blade deformation opposes the misalignment due to an

increase in θcn. The net result is that the out-of-plane misalignment decreases as θcn

increases in this region. As a result for θcn between 2.5◦ and 10◦, xh can be seen to lie

around 0. xh, however, increases as θcn moves towards 20◦, increasing the contribution

of conicity to misalignment. Therefore, the gap between the two models once again

begins to increase for the region beyond θcn = 10◦. This could not be observed in the

case of the hyper-stiff blades. This can be explained by the fact that the deformation

in that case is negligible, so only θcn is responsible for causing any misalignments.

These factors reflect the versatility and higher sensitivity of the 3-D DRD-BEM model

in capturing complex effects of rotor deformation on the computation of aerodynamic

loads.

4.3 Time-dependent solutions around the nominal

operational state

Results for time-dependent solutions are presented in this section. Results obtained by

the two models are compared in terms of power output, rorot thrust and displacement
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Figure 4.4: Time dependant solutions for a standard NREL-RWT with only
aerodynamic loads accounted for, with θcn = 10◦. The left hand column shows the
standard DRD-BEM results, while the right hand column shows the 3-D DRD-BEM
results
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Figure 4.5: Time dependant solutions for a blade 50% more flexible than the
standard blade and θcn = 10◦. The left hand column shows the standard DRD-BEM
results, while the right hand column shows the 3-D DRD-BEM results
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Figure 4.6: Time dependant solutions for a standard NREL-RWT with both
aerodynamic and gravitational loads accounted for and θcn = 10◦. The left hand
column shows the standard DRD-BEM results, while the right hand column shows
the 3-D DRD-BEM results
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Figure 4.7: Time dependant solutions for a blade 50% more flexible than the
standard blade with both aerodynamic and gravitational loads accounted for and
θcn = 10◦. The left hand column shows the standard DRD-BEM results, while the
right hand column shows the 3-D DRD-BEM results
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of the blade at 90% length. Figures 4.4 and 4.5 include the effects of aerodynamic

loads only. The oscillatory nature seen in the plots are due to the design tilt of 5◦ and

for figures 4.6 and 4.7, in addition to tilt, there is the added effect of gravitational

loads, both of which introduce asymmetries into the solution. This allows for testing

the 3-D DRD-BEM model for unsteady aero-elastic effects. While the simulation was

run for 100 seconds, the results are shown only for a window of 80 seconds to 90

seconds.

In figure 4.4 the simulation results for a standard NREL-RWT blade are presented.

In the results it is observed that all variables obtained by using the 3-D DRD-BEM

model show a reduced mean value, which, in accordance with results shown in previous

sections, is due to the effects of the radial force component included in the new model.

Another valuable observations is made in the plots showing rotor thrust. The thrust

plots clearly depict an increased sensitivity to misalignment for the 3-D DRD-BEM

model. Figure 4.5 includes results for blades with flexibilty increased by 50%. These

plots show similar trends, with the increase in sensitivity now evident for all the

variables plotted. This was also to be expected as greater flexibility must result in

greater deformation which in turn will lead to higher levels of misalignment. This

would cause an increase in the contribution of radial forces, which is, as expected,

better captured by the 3-D DRD-BEM model. Figures 4.6 and 4.7 represent similar

cases with the only addition being inluding the effects of gravitational loads.
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Chapter 5

The Actuator Disk Model

All of the misalignments highlighted in previous chapters, intended to be accounted for

by the 3-D DRD-BEM model, cause changes in effective velocity at different sections

of the rotor. Since these misalignments are expected to be at a larger scale in modern

turbines, this can lead to high axial induction factors at certain blade sections. Some

situations most prevalent in modern wind turbines, leading to significant levels of

misalignments, are the transitional states between control actions, especially pitching

action which takes a finite amount of time given the inertia presesnted by extreme

blade sizes [30, 31]. Another example would be a turbine being operated in a deloading

state [32, 33, 34, 35, 36] as shown in figure 5.1. Other important cases are extreme

wind condtions consisting not only of gusts but also low winds, given that wind

turbines are operating in a much wider range of wind conditions than earlier [38].
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There are a few more situations mentioned in the introduction with relevant references

cited.

Figure 5.1 shows a possible scenario where the flow might enter states of axial induc-

tion factors greater than 0.5. Figure 5.1 represesnts a situation where the turbine is

operating at a deloaded condition for the case of below nominal wind speed of 6m/s

by increasing the rotor RPM from approximately 8 RPM to 10 RPM. The range of

optimal RPMs for the given wind speeds for an NREL 5MW turbine can be found

in [41]. An RPM of 10 was decided upon based on the works of [67] which includes

an analysis of deloading an NREL 5MW reference turbine and [68] which presents an

analysis of deloading control strategy and feasible limits of RPM variation used for

deloading.
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Figure 5.1: Axial induction factors, at 90% span, for an NREL 5MW
reference turbine operating in a deloaded condition of 10 RPM at a wind
velocity of 6m/s instead of the usual 8 RPM.
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The one dimensional momentum model, as used in BEM, is no longer reliable across

an actuator disk in this regime. As such there has been substantial analysis of these

flow states with regard to the BEM model. Lock et al. [11] provides one of the

earliest detailed analysis of these states, and proposes a possible empirical correction

based on experiments. Several other authors who have provided a detailed analysis

of these states include Burton et al. [2], Stoddard [69, 70], Eggleston and Stoddard

[9], Wilson and Lissaman [71] and Glauert [4] whose work forms the basis of the

correction model used in BEM. More recent analysis can be seen in Sørensen et al.

[72], where a numerical analysis of an actuator disc model for the flow states seen

in this regime is presented and Johnson [73] providing a detailed review of various

experiments providing data for these flow states. The normal operating state of the

rotor is called the windmill brake state where the rotor extracts energy from the flow.

As the tip speed ratio increases either due to a change in orientation or a drop in

wind velocity (relative or otherwise), the axial load on the rotor increases, thereby,

increasing thrust and consequently the axial induction factor. Initially the rotor starts

to see some recirculation in its wake as flow from outside the wake mixes with the slow

moving air in the wake. This is called the turbulent wake state where the rotor starts

to act more and more as a circular disc. This, as seen in figure 5.2, occurs for an axial

induction factor, a, ranging approximately from 0.5 to 1. For even higher values of a,

the rotor enters the vortex ring state, where the recirculation now assumes a toroidal

path centered at the tip of the rotor disc. Finally the flow across the rotor reverses
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and the turbine starts acting like a propeller imparting energy into the flow while still

creating thrust in a downwind direction. This state is called the propeller brake state.

Figure 5.2 represents these states with respect to the theoretical parabolic curve as

obtained by the momentum theory. The experimental results used by Glauert [4] are

also shown in figure 5.2. It is this set of data that this study aims to improve upon

with the help of a numerical experiment as dicussed next.

Figure 5.2: Thrust coefficient versus axial interference factor ’a’ with var-
ious operating flow states of a wind turbine based on figures from [9] and
[10]. The flow states from Lock et al. [11] show induced velocity ’u’ at the
rotor, free stream velocity ’V’ and thrust ’T’. The figure is not to scale.
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The numerical experiment consists of a 2-D Actuator disk model simulating flow

across an annular actuator. In a BEM model each blade section is represented by an

actuator disk, in the form of an annular actuator, for the purpose of performing a

momentum balance across it. However, as explained previously, for high axial induc-

tion factor regimes we need a more complex analysis than a simple 2-D momentum

balance. This analysis was performed by using data from experiments on propellers

by Munk [7], Lock and Bateman [39] and Lock et al. [11] by Glauert [4] and Lock

[11]. Glauert was the first to propose using an empirical fitting to the experimen-

tal data for a BEM model. He proposed to interpolate a thrust value based on the

fitting for high induction factor flow states, rather than using a momentum balance.

This method, as previously mentioned, has since been widely accepted with several

researches introducing slight modifications to the original empirical relation proposed

by Glauert. We propose using data from a simulation, rather than experiments, to

perform the analysis for such flow states. This is primarily because a BEM model

is based on a momentum balance across an ideal actuator disk. Therefore, a 2-D

actuator disk model is more representative of the BEM theory. So each section is still

an actuator disk, only the simple 2-D momentum balance is now replaced by a more

complex turbulent flow actuator disk model for sections seeing high axial induction

factors. Another factor which encouraged us to use a simulation model instead, was

the substantial dispersion in data due to limitations of sensors used in that era as well

as due to the unsteady nature, as expected, of a non-ideal case. The BEM theory
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however, is based on a steady in the average momentum balance. Another factor is

the increased sensitivity of 3-D DRD-BEM to changes in blade section orientation as

seen in the results section of chapter 4, leading to the numerical solution seeing a wider

range of axial induction factors. Hence there is a greater chance of the simulation

entering flow states beyond the normal operating states. Another important point

that needs to be reiterated is the fact that the the 3-D DRD-BEM operates in the

l coordinate system. This means that the forces acting on the stream tube undergo

only one small rotation about the z axis, unlike the extensive coordinate transforma-

tion required by DRD-BEM all the way to the h coordinate system. This means that

the resulting induction factors seen in every iteration of the 3-D DRD-BEM will be

the one seen in the l coordinates system and hence of a greater magnitude than the

induction factors seen in the h coordinate system of DRD-BEM. This can be seen in

figure 5.3 which plots a standard NREL 5 MW reference turbine operating at rated

wind speed and rotor RPM, for a duration of 90 seconds. The solid line representing

the axial induction factor seen in 3-D DRD-BEM can be seen to be much higher than

the axial induction factor of the DRD-BEM algorithm represented by the dashed line.

This difference is expected to get higher for cases with greater misalignments. This

makes it all the more important to pay special attention to these flow states for a 3-D

DRD-BEM model.

In light of all of these factors, a 2-D actuator disk analysis for the high axial induction

factor flow states was performed. The model was created in Ansys Fluent and a k− ǫ
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Figure 5.3: Axial induction factors, at 90% span, for an NREL 5MW ref-
erence turbine under normal operating conditions. The solid line represesnts
the axial induction factor al obtained by the 3-D DRD-BEM method, while
the dashed line shows the axial induction factor a as obtained by DRD-BEM.

realizable turbulent model was used.

5.1 The numerical experiment

The actuator disk model created in Ansys-Fluent consists of an axisymmetric domain,

with the actuator disk being represented by an infinitely thin boundary in the form

of an interface between cells. This interface acts as an actuator disk by virtue of a
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discontinuous pressure drop applied across it. It, therefore, represents a uniformly

loaded actuator disk, which is what each annular strip of BEM represents. The flow

was solved using a k − ǫ realizable turbulence model. As mentioned in [74] and [75]

the k − ǫ models unlike the k − ω models are less sensitive to free stream properties

of the turbulence kinetic energy and its dissipation rate. This is the reason why in

the k−ω SST approach the model gradually changes from a k−ω formulation in the

boundary layer to a k − ǫ one in the free shear regions. Since the above mentioned

actuator disk model does not have to deal with boundary layers a k − ǫ model does

seem to be the logical choice. The k − ǫ realizable model has been shown to perform

better than other k− ǫ models for boundary-free shear flows with a high mean shear

rate and flows with secondary flow features [74, 76]. All of these are the expected

flow features in the actuator disk model for higher pressure drops. A comparison with

the other turbulence models in Fluent showed that the results of the k − ǫ realizable

model best matched the experimental data used by Glauert in the flow states beyond

the turbulent wake state. It also seems to closely follow the trend of the polynomial

fitting (suggested in DRD-BEM [8]) for the region between the Turbulent-wake state

and the vortex ring state. This fitting has been shown to minimize the approximation

error to Glauert’s experimental data. Finally, the numerical experiment data merges

perfectly with the theoretical solution of the Control-volume (CV ) analysis for the

low axial interference factor regimes. The validity of the CV analysis has been well

established not just by controlled experiments in wind tunnels on propellers and
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scaled models of turbines, but also in field measurements on full-scale wind turbines.

Another important confirmation came in the form of the flow topology depicted in

figure 5.4. Figure 5.4 shows that the case with an axial induction factor a = 0.41

for a CT = 1.01 shows the first signs of vortical wakes with recirculative patterns

and re-entry flow (completely absent from the simulation model with CT = 1). It

has been explained earlier how this flow pattern disrupts the stream-tube and makes

the CV theory no longer applicable, thereby, entering the “Turbulent-wake state”.

This validates the choice of the turbulence model used to solve the actuator disk

problem. What is interesting is the fact that this is also the point around which the

data compiled by Glauert begins to enter the so called “turbulent wake state” (see

figure 2.13). All these factors justified the use of a k − ǫ realizable turbulence model

for our numerical experiments.

The pressure drop ∆p across the actuator disk was based on the value of coefficient

of thrust CT as seen by the propellers beginning from the regular operational states

till the high axial induction factor states. CT is given by:

CT =
T

1

2
ρW1

2A
(5.1)

Where A is the area of the actuator disk, Thrust T = A∆p, ρ is the density of air

taken to be 1.225kg/m3 and Winfty is the free stream velocity.
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Figure 5.4: Figure on the top panel shows the wake behind the Actuator Disk at
CT = 1.01. Recirculation can be seen in the zoomed in region shown in the bottom
panel.
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Therefore, the pressure drop ∆p across the actuator disk can be found from the CT

values using:

∆p =
1

2
ρCT (5.2)

The pressure drop ∆p was found for CT values ranging from 0.2 to 4. These ∆p

values were applied across the actuator disk model in Fluent and the respective axial

induction factor across the disk was calculated. The induction factor was calculated

using the relation W2 = W1(1 − a), where W1 is the free-stream velocity and W2 is

velocity at the disk. W2 is found by performing an area weighted average of the axial

velocities at the actuator disk cells.

5.2 Results and discussion

The axial induction factors obtained from the Actuator disk model were then plotted

against the respective CT values to get the plot in figure 5.6. Table 5.1 shows a

sample of the data used in figure 5.6. To be used in the 3-D DRD-BEM algorithm

explained in chapter 3, a 4th order polynomial is used to fit the data (also shown

in 5.6). This polynomial will be used to find the CT value once the axial induction

factor goes beyond 0.28. An axial induction factor of 0.28 was chosen based on where

the curve obtained from the model begins to depart from the theoretical curve.
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Figure 5.5: Comparison of Buhl’s fitting with no tip-hub losses i.e. FF = 1
shown as solid lines with a tip-hub loss factor FF = 0.8. shown as dashed lines

For finding the best fit curve, it was decided to use the entire set of data starting

from CT = 0.2 till CT = 4 and not just for the data after a = 0.28. The reason for

this lies in the definition of the tip loss factor. It was mentioned earlier that if tip and

hub losses are considered a discontinuity appears between the CT function and the

fitting curve [5]. For an iterative process this discontinuity has the potential to cause

problems with convergence. Buhl’s [5] solution was to force a tangential match with

the stream-tube CT function whether or not the tip and hub losses are considered, but
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Figure 5.6: Coefficient of thrust CT as a function of the axial induction factor
a.

in that process he ignored a lot of the initial data points from Glauert’s experimental

data set. To highlight this point, in figure 5.5 the fitting suggested by Buhl without

any tip-hub losses are compared with a loss factor of 0.8 (an FF factor was also seen

earlier in figure 2.13).

It can be seen that with the loss factor added Buhl’s fit does not seem to follow the

trend seen in the experimental data. Keeping this in mind it was decided to shift the

entire fitted curve down by a factor equal to the Tip-Hub loss factors. This, however,

dramatically shifted the point at which the fitting curve departed from the theoretical

one. The solution to that inherently lay in the way the best fit curve was derived. It
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Figure 5.7: Coefficient of thrust CT as a function of the axial induction factor
a FF=1 and FF=0.9.

was decided to use the entire set of data starting from CT = 0.2 till CT = 4 and not

just for the data after a = 0.28. Using the entire data set not just ensures that the

point of departure always lies at CT = 0.28, but also makes sure that the accuracy of

the control volume analysis, which has been proven time and again, is fully utilized.

Figure 5.7 shows the plot obtained by the above mentioned fitting procedure. Of the

two fitting curves in the plot, the one on top represents the case where no tip-hub

losses have been included. The one below that curve is for a tip-hub loss factor of 0.9

and can be seen to pass through a = 0.28 just as the one without any loss factor.

The following table 5.1 shows some of the data points obtained from the k−ǫ realizable
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model of the actuator disk. The complete set of data used to obtain the new fitting

can be in the table A.1 in Appendix A A

Table 5.1

Axial induction factor a given by the k − ǫ turbulence model for the
pressure drop ∆p applied across the disk. ∆p is calculated based on the

required CT value at the disk. W2 is velocity at the disk.

∆p

[Pa]

CT W2 m/s a

0.1225 0.2 0.05395 0.9461

0.245 0.4 0.11546 0.8845

0.3675 0.6 0.81019 0.1898

0.6125 1.0 0.59585 0.4042

0.735 1.2 0.36568 0.6343

0.8575 1.4 0.17135 0.8287

0.98 1.6 0.08405 0.9160

1.53125 2.0 −0.03326 1.0333

1.96 2.4 −0.12795 1.1280

2.45 2.8 −0.21853 1.2185

6.125 4 −0.46531 1.4653
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The following figures show the implementation of the new interpolation in 3-D DRD-

BEM when axial induction factor al, at 90% blade span, becomes greater than 0.4.

As explained earlier, 0.4 is the point beyond which wake recirculation starts. The

first case is for the start up region of the NREL 5MW turbine. Based on [41] a rotor

RPM of 8.04 was used for a wind velocity of 6m/s. The mean al over a one minute

period is found to be 0.42. The second case is for a rotor rotating at 12.1RPM when

the wind velocity suddenly drops to 5m/s. The mean al over the same period is found

to be 0.70. Figure 5.8 shows the two axial induction factors. The dashed line shows

the start up zone of turbine operation, while the solid line represents the case where

the wind velocity drops suddenly to 5m/s. Figures 5.9 and 5.10 show the Power and

Thrust of the rotor as well as the blade displacement at 90% span.
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Figure 5.8: Axial induction factors, at 90% span, for an NREL 5MW
reference turbine. The solid line represesnts al when wind velocity is 5m/s
at 12.1RPM , while the dashed line shows al for wind velocity 6m/s at
8.04RPM .
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Figure 5.9: Power, thrust and blade displacement at 90% span for the start up
zone of a rotor, with wind velocity at 6m/s and rotor at 8.04RPM .
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Figure 5.10: Power, thrust and blade displacement at 90% span when the wind
velcity drops suddenly to 5m/s with the rotor still operating at 12.1RPM .
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Chapter 6

Conclusions

The results presented in Chapter 4 emphasize the 3-D DRD-BEM model’s ability to

capture the 3-Dimensional nature of interference patterns which become more and

more significant as levels of misalignment in modern rotors increases. This increase

in misalignment with the plane of rotation due to large scale deformation of blade

sections increases the contribution of radial forces in the exchange of momentum

with incoming wind. The tests presented in this research used progressively lighter

and more flexible blades in addition to increasing hub-coning angles. This was done

to methodically introduce misalignments into the rotor geometry, and observe how

the new model performed under these test conditions. The results so obtained were

analyzed and also compared with validated experiments from (Ponta et al. [8]) which

in turn had used the standard DRD-BEM model.
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Figures 4.1 and 4.2 help illustrate this notion of increased radial contribution by

using just the increase in θcn in order to introduce misalignments. Since the blades

used in the simulation that gave those plots were hyper-stiff, conicity was the only

source of misalignments. Figure 4.1 shows how power extracted from the wind when

computed using results from the 3-D DRD-BEM model shows a significant decrease in

value. This is in accordance with the reasoning that the momentum balance equation,

when looked at from the level of the hub-coordinate system, is more complete in 3-

D DRD-BEM since it inlcudes all three force components affecting the change in

momentum. The figure also shows that as the misalignments increased the difference

in power computed by the two models goes up proportionally. This confirms the

conlcusion that as the rotor operates more and more out-of-plane radial forces become

increasingly important in the interference model. Figure 4.2 helps explain the above

mentioned importance of radial forces by a comparison of the proportional influence

of radial and tangential force components in terms of interference/induction factors.

The radial induction factor a′′ is comparable to the tangential induction factor a′

under normal conditions suggesting that they are as important as a′ in the iterative

algorithm used for computing the induction factors. Moreover, in case of higher

levels of misalignments, brought about by increasing θcn, a
′′ even exceeds a′, thereby,

highlighting its significance in modern wind turbines.

Figure 4.1 shows results of experiments where misalignments were introduced both

by increasing θcn and by introducing blade flexibilty. The complex results justify use
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of hyper-stiff blades at first in figures 4.1 and 4.2 to help understand the effects of

misalignment in a step by step fashion. All types of blades, whether stiff or flexible,

show the expected trend of a reduced rotor power obtained by the 3-D DRD-BEM

model. Both models also show a drop in power for more flexible blades. This is due to

increasingly complex modes of deformation, expected of flexible blades, captured by

the advanced BEM models (see Ponta et al. [8] for an explanation with respect to the

standard DRD-BEM model). The difference in power obtained by the two methods

when looked at in proportion to the extent of misalignments is clearly different when

the blades are flexible as opposed to when they are stiff. In stiff blades the difference is

maximum in cases with higher θcn while for the flexible blades the difference is highest

when θcn = 0. This was, as explained in section 4.2,due to misalignments due to

coning countering those due to blade deformation. While the tip displacement clearly

increases for both models with increase in θcn, in case of the 3-D DRD-BEM model,

the curves begin to flatten and eventually begin to increase in the region between

2.5◦ and 10◦ as blade flexibility increases. The curves from the standard model for

different flexibilities, however, remain parallel in that region. This is an indication of

the improved sensitivity of the 3-D DRD-BEM to the complex deformation modes.

The above mentioned notion of the 3-D DRD-BEM model being more sensitive to

deformation can be best observed in the time dependent solutions shown in figures 4.4

and 4.5. Oscillations in the instantaneous response clearly have a higher amplitude for

the new model when compared with the standard DRD-BEM model. This becomes
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more evident with an increase in blade flexibility. Along the lines of previous results of

the steady state solution there was a noticeable reduction in the mean value of all the

variables shown in figures 4.4 to 4.7. As expected, including gravity to the mix leads

to relative decrease in the impact of the change in aerodynamic loads brought about

by the new model. Still, the mean value is noticeably lower for the 3-D DRD-BEM

model. Thus, the 3-dimensional effects have a significant effet on the interference

patterns across a stream tube.

The 3-D DRD-BEM will give a more comprehensive solution to the simulation of

future turbines. This is based on the expectations that the future of wind turbines

lies in implementing innovative control strategies which introduce higher levels of

miaslignments than what is seen in the relatively stiff blades in use today. Since this

new model can represent the aeroelastic effects of out-of-plane misalignments with

higher accuracy and sensitivity it is ideally suited for testing active control actions

like coning and pitching as well as passive control strategies like adaptive blades with

bend-twist coupling. Advanced designs consisting of lighter and more flexible blades

that will bring down cost of manufacturing along with those of transport-assembly

will also lead to much higher levels of misalignments, further justifying the use of the

3-D DRD-BEM model.

Chapter 5 presents a much needed exploration of the high axial induction factor

flow states with the help of numerical experiments. With a dramatic increase in the
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complexity of control strategies the operational regimes of wind turbines has seen a sea

of change. Turbines can now be expected to operate at high axial factor regimes for

a much longer duration than seen earlier. Figures 5.1 show a 3-D DRD-BEM method

used for modeling quite reasonable practical scenarios where the wind turbine can

enter such flow states. These operational regimes should, thus, be taken seriously

in all future Wind turbine models. Another reason for exploring these operational

regimes is the 3-Dimensional effects of rotor misalignments on the aerodynamic forces

as captured by 3-D DRD-BEM. That combined with the fact the 3-D DRD-BEM

operates in the l coordinates system, thereby, as explained earlier, is bound to see

higher values of axial induction factors especially at higher degrees of misalignments.

The k − ǫ turbulent flow analysis of an Actuator Disk model shows good agreement

when compared with the results of Glauert’s experimental data set, and is in excellent

agreement with the theoretical curve in the region where the stream-tube control

volume theory is valid (i.e. in the range of a = 0 to a = 0.3). Comparing figure 5.2

with figure 5.6, it can be seen that both sets of data clearly depart from the theoretical

curve at around a = 0.3, and the spike in CT seen in figure 2.13 in the experimental

data coincides with the first signs of wake recirculation seen in the Turbulence model

(see figure 5.4 and the associated discussion); both occur at around a = 0.4, which

also confirms the validity of the polynomial fit proposed here.

A new 4th order polynomial was used to fit the new set of data as obtained by the
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turbulent analysis, and this polynomial was used to find the CT for axial induction

factors greater than 0.28. It is important to point out that Glauert’s data do not cover

the vortex ring state, which starts around a = 0.9. This was another motivation for

performing this numerical analysis which extends to cover the region upto a = 1.5.

Hence, this new model accomodates situations beyond a = 0.9, something which was

lacking in previous BEM models. This operating regime will gain more importance

as turbines are allowed to operate at much higher RPMs at part load conditions

to store energy for wind farms in a “flywheel” mode. Thus, the numerical analysis

presented here covers an importnat gap in the available data. Some other examples

of experiments along these lines (e.g., [77, 78, 79, 80, 81] mostly concentrate on wake

analysis and not on conditions at or around the disk, which is what is required in a

BEM analysis.

As an outlook for further work, it would be useful to revisit the current implemen-

tation of the tip-hub loss factor, since the derivation proposed by Prandtl [82], as

mentioned earlier, is based on a classical rotor aligned with the plane of rotation.

It would, therefore, be a useful endeavour to reinterpret the tip-hub losses keeping

sectional misalignments and heavy loading in mind and possibly come up with a

modified expression.

104



www.manaraa.com

References

[1] Davison, O.G.. Building smarter wind turbines: Eric Loth thinks

like the wind. Popular Science; 2015. URL http://www.popsci.com/

eric-loth-thinks-wind.

[2] Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E.. Wind Energy Handbook.

Chichester, UK: Wiley; 2001.

[3] IEC, . Wind turbine generator systems – part 13: Measurement of mechani-

cal loads. Report IEC/TS 61400–13; International Electrotechnical Commission

(IEC); 2001.

[4] Glauert, H.. The analysis of experimental results in the windmill brake and

vortex ring states of an airscrew. Tech. Rep. Reports and Memoranda Volume

1026; Great Britain Aeronautical Research Committee; 1926.

[5] Buhl, M.. A new empirical relationship between thrust coefficient and induction

105

http://www.popsci.com/eric-loth-thinks-wind
http://www.popsci.com/eric-loth-thinks-wind


www.manaraa.com

factor for the turbulent windmill state. Tech. Rep.; National Renewable Energy

Laboratory; 2005.

[6] Lock, B., Townend, . An extension of the vortex theory of airscrews with appli-

cations to airscrews of small pitch, including experimental results. Aeronautical

Research Committee, R&M 1925;1014(1014):1 to 49.

[7] Munk, M.M.. Model tests on the economy and effectiveness of helicopter pro-

pellers, naca tn 221 1925;.

[8] Ponta, F.L., Otero, A.D., Lago, L.I., Rajan, A.. Effects of rotor deformation

in wind-turbine performance: The dynamic rotor deformation blade element

momentum model (drd–bem). Renewable Energy 2016;92:157–170.

[9] Eggleston, D.M., Stoddard, F.. Wind turbine engineering design. Van Nostrand

Reinhold Co. Inc., New York, NY; 1987.

[10] Walker, S.N.. Performance and optimum design analysis/computation for pro-

peller type wind turbines. Ph.D. thesis; Oregon State University; 1976.

[11] Lock, C.N.H., Bateman, H., Townsend, H.C.H.. An extension of the vortex

theory of airscrews with applications to airscrews of small pitch, including exper-

imental results, reports and memoranda no. 1014. British Aeronautical Research

Committee 1926;.

106



www.manaraa.com

[12] Yu, W., Hodges, D.H., Volovoi, V., Cesnik, C.E.S.. On Timoshenko-like

modeling of initially curved and twisted composite beams. Int J Sol and Struct

2002;39:5101–5121.

[13] Chen, L., Ponta, F.L., Lago, L.I.. Perspectives on innovative concepts in

wind-power generation. Energy for Sustainable Development 2011;15:398–410.

[14] Hodge, N., Stocks, G.C.. Wind energy companies: A snapshot of the global

wind industry. 2008. URL www.greenchipstocks.com.

[15] EWEA, . Upwind: Design limits and solutions for very large wind turbines. 2011.

Sixth Framework Programme, European Wind Energy Association, Brussels,

Belgium.

[16] Ponta, F.L., Otero, A.D., Rajan, A., Lago, L.I.. The adaptive-blade concept

in wind-power applications. Energy for Sustainable Development 2014;22:3–12.

[17] Jamieson, P.. Innovation in wind turbine design. Wiley; 2011.

[18] Crawford, C., Platts, J.. Updating and optimization of a coning rotor concept.

Journal of Solar Energy Engineering 2008;130:031002.

[19] Rasmussen, F., Petersen, J.T., Volund, P., Leconte, P., Szechenyi, E.,

Westergaard, C.. Soft rotor design for flexible turbines. Final report. Riso

National Laboratory; 1998.

107

www.greenchipstocks.com


www.manaraa.com

[20] Ichter, B., Steele, A., Loth, E., Moriarty, P., Selig, M.. A morphing

downwind-aligned rotor concept based on a 13-mw wind turbine. Wind Energy

2016;19(4):625–637.

[21] Loth, E., Steele, A., Ichter, B., Selig, M., Moriarty, P.. Segmented up-a rotor

for extreme-scale wind turbines. AIAA Aerospace Sciences Meeting 2012;1290.

[22] Crawford, C.. Re-examining the precepts of the blade element momentum theory

for coning rotors. Wind Energy 2006;9(5):457–478.

[23] Bazilevs, Y., Hsu, M.C., Akkerman, I., Wright, S., Takizawa, K., Henicke,

B., et al. 3d simulation of wind turbine rotors at full scale. part i: Geometry

modeling and aerodynamics. International Journal for Numerical Methods in

Fluids 2011;65(1-3):207–235.

[24] Bazilevs, Y., Hsu, M.C., Kiendl, J., Wuchner, R., Bletzinger, K.U.. 3d

simulation of wind turbine rotors at full scale. part ii: Fluid-structure interaction

modeling with composite blades. International Journal for Numerical Methods

in Fluids 2011;65(1-3):236–253.

[25] Hansen, M.O.L., Sørensen, J.N., Vousitas, S., Sørensen, N., Madsen, H.A..

State of the art in wind turbine aerodynamics and aeroelasticity. Prog in

Aerospace Sciences 2006;42:285–330.

108



www.manaraa.com

[26] Jonkman, J.M., Buhl Jr, M.L.. Fast user’s guide. Tech. Rep. NREL/EL-

500-38230; National Renewable Energy Laboratory (NREL); Golden, Colorado,

USA; 2005.

[27] Moriarty, P., Hansen, A., (US), N.R.E.L., Engineering, W.. Aerodyn theory

manual. National Renewable Energy Laboratory; 2005.

[28] Laino, D., Hansen, A.. User’s guide to the wind turbine aerodynamics computer

software aerodyn. Tech. Rep.; National Renewable Energy Laboratory under

subcontract No. TCX-9-29209-01; 2002.

[29] Otero, A.D., Ponta, F.L.. Structural analysis of wind-turbine blades by

a generalized Timoshenko beam model. Journal of Solar Energy Engineering

2010;132:011015.

[30] Muljadi, E., Butterfield, C.P.. Pitch-controlled variable-speed wind turbine

generation. IEEE Transactions on Industry Applications 2001;37(1):240–246.

[31] Geng, H., Yang, G.. Linear and nonlinear schemes applied to pitch control of

wind turbines. The Scientific World Journal 2014;2014.

[32] Dvorkin, Y., Ortega-Vazuqez, M., Kirschen, D.. Wind generation as a reserve

provider. Generation, Transmission Distribution, IET 2015;9(8):779–787.

[33] Sun, Y.Z., Zhang, Z.S., jie Li, G., Lin, J.. Review on frequency control

109



www.manaraa.com

of power systems with wind power penetration. In: Power System Technology

(POWERCON), 2010 International Conference on. 2010, p. 1–8.

[34] Lubosny, Z., Bialek, J.W.. Supervisory control of a wind farm. Power Systems,

IEEE Transactions on 2007;22(3):985–994.

[35] Tang, X., Fox, B., Li, K.. Reserve from wind power potential in system

economic loading. Renewable Power Generation, IET 2014;8(5):558–568.

[36] Muljadi, E., Singh, M., Gevorgian, V.. Fixed-speed and variable-slip wind

turbines providing spinning reserves to the grid. In: Power and Energy Society

General Meeting (PES), 2013 IEEE. 2013, p. 1–5.

[37] Erlich, I., Wilch, M.. Primary frequency control by wind turbines. In: Power

and Energy Society General Meeting, 2010 IEEE. IEEE; 2010, p. 1–8.

[38] Sebastian, T.. The aerodynamics and near wake of an offshore floating horizontal

axis wind turbine. Ph.D. thesis; University of Massachusetts - Amherst; 2012.

[39] Lock, C.N.H., Bateman, H.. Some experiments on airscrews at zero torque,

with applications to a helicopter descending with engine ”off”, and to the design

of windmills, reports and memoranda no. 885. British Aeronautical Research

Committee 1924;.

[40] Wilson, R.E.. Aerodynamic behavior of wind turbines. In: Spera, D., editor.

110



www.manaraa.com

Wind Turbine Technology, Fundamental Concepts of Wind Turbine Engineering.

ASME Press, New York; 1994, p. 215–282.

[41] Jonkman, J., Butterfield, S., Musial, W., Scott, G.. Definition of a 5-MW

reference wind turbine for offshore system development. Tech. Rep. NREL/TP-

500-38060; National Renewable Energy Laboratory; 2009.

[42] Glauert, H.. Airplane propellers. In: Aerodynamic theory. Springer; 1935, p.

169–360.

[43] Manwell, J.F., McGowan, J.G., Rogers, A.L.. Wind energy explained: Theory,

design and application. Chichester, UK: Wiley; 2002.

[44] Lanzafame, R., Messina, M.. Fluid dynamics wind turbine design: Critical

analysis, optimization and application of {BEM} theory. Renewable Energy

2007;32(14):2291 – 2305.

[45] Lanzafame, R., Messina, M.. {BEM} theory: How to take into account the

radial flow inside of a 1-d numerical code. Renewable Energy 2012;39(1):440 –

446.

[46] Madsen, H.A., Mikkelsen, R., Oye, S., Bak, C., Johansen, J.. A detailed

investigation of the blade element momentum (bem) model based on analytical

and numerical results and proposal for modifications of the bem model. In:

Journal of Physics: Conference Series; vol. 75. IOP Publishing Ltd; 2007, p.

012016.

111



www.manaraa.com

[47] Dai, J., Hu, Y., Liu, D., Long, X.. Aerodynamic loads calculation and analysis

for large scale wind turbine based on combining {BEM} modified theory with

dynamic stall model. Renewable Energy 2011;36(3):1095 – 1104.

[48] G., L.J., S., B.T.. A generalised model for airfoil unsteady aerodynamic be-

haviour and dynamic stall using the indicial method. In: 42nd. Annual Forum

of the American Helicopter Society, Washington D. C. 1986,.

[49] Vaz, J.R.P., Pinho, J.T., Mesquita, A.L.A.. An extension of {BEM}method ap-

plied to horizontal-axis wind turbine design. Renewable Energy 2011;36(6):1734

– 1740.

[50] Griffin, D.A.. Blade system design studies volume I: Composite technologies for

large wind turbine blades. Report SAND2002-1879; Sandia National Laborato-

ries; 2002.

[51] Hodges, D.H.. Nonlinear Composite Beam Theory. Reston, Virginia: AIAA;

2006.

[52] Rankine, W.J.M.. On the Mechanical Priciples of the Action of Propellers.

Institution of Naval Architects; 1865.

[53] Froude, W.. On the elementary relation between pitch, slip, and propulsive

efficiency. Transactions of the Institute of Naval Architects 1878;19.

112



www.manaraa.com

[54] Froude, R.E.. On the part played in propulsion by differences of fluid pressure.

Transactions of the Institute of Naval Architects 1889;30(390-405):22.

[55] Hansen, M.. Aerodynamics of wind turbines. Earthscan/James & James; 2008.

[56] Du, Z., Selig, M.S.. A 3-D stall-delay model for horizontal axis wind turbine

performance prediction. In: AIAA, Aerospace Sciences Meeting and Exhibit

36th, and 1998 ASME Wind Energy Symposium, Reno, Nevada, USA. American

Institute of Aeronautics and Astronautics, ASME International; 1998, p. 9–19.

[57] Eggers, A.J.. Modeling of yawing and furling behavior of small wind turbines.

In: 2000 ASME Wind Energy Symposium, 19 th, AIAA, Aerospace Sciences

Meeting and Exhibit, 38 th, Reno, NV. 2000, p. 1–11.

[58] Leishman, J., Aerodynamicist, S., Beddoes, T., Specialist, A.. A Semi-

Empirical Model for Dynamic Stall. Journal of the American Helicopter Society

1989;34:3.

[59] Leishman, J., Beddoes, T.. A generalized model for unsteady aerodynamic

behaviour and dynamic stall using the indicial method. Journal of the American

Helicopter Society 1990;36:14–24.

[60] Viterna, L.A., Janetzke, D.C.. Theoretical and experimental power from large

horizontal-axis wind turbines. Tech. Rep.; National Aeronautics and Space Ad-

ministration, Cleveland, OH (USA). Lewis Research Center; 1982.

113



www.manaraa.com

[61] Prandtl, L.. Applications of modern hydrodynamics to aeronautics 1923;.

[62] Bak, C., Aagaard Madsen, H., Johansen, J.. Influence from blade-tower

interaction on fatigue loads and dynamic (poster). In: Wind energy for the new

millennium. Proceedings. 2001 European wind energy conference and exhibition

(EWEC’01). 2001, p. 2–6.

[63] Powles, S.R.J.. The effects of tower shadow on the dynamics of a horizontal-axis

wind turbine. Wind Engineering 1983;7:26–42.

[64] Xudong, W., Shen, W.Z., Zhu, W.J., Srensen, J.N., Jin, C.. Shape optimiza-

tion of wind turbine blades. Wind Energy 2009;12(8):781–803.

[65] Burden, R.L., Faires, J.D.. Numerical analysis. Brooks Cole; 1998.

[66] Mathews, J.H., Fink, K.D.. Numerical methods using Matlab. Prentice Hall;

1999.
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Appendix A

Actuator Disk turbulent flow

analysis results

Table A.1

Axial induction factor a given by the k − ǫ turbulence model for the
pressure drop ∆p applied across the disk. ∆p is calculated based on the

required CT value at the disk. W2 is velocity at the disk.

∆p [Pa] CT W2 m/s a

0.1225 0.2 0.9460554 0.0539446

0.18375 0.3 0.9164468 0.0835532

0.245 0.4 0.8845438 0.1154562

0.30625 0.5 0.8497124 0.1502876

0.3675 0.6 0.8101868 0.1898132

Continued on next page...
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Table A.1 – Continued

∆p [Pa] CT W2 m/s a

0.42875 0.7 0.7657464 0.2342536

0.49 0.8 0.7184002 0.2815998

0.55125 0.9 0.6642122 0.3357878

0.581875 0.95 0.6339225 0.3660775

0.6125 1 0.595845 0.404155

0.618625 1.01 0.5863391 0.4136609

0.62475 1.02 0.5759832 0.4240168

0.643125 1.05 0.545177 0.454823

0.655375 1.07 0.526983 0.473017

0.667625 1.09 0.4862064 0.5137936

0.67375 1.1 0.4780821 0.5219179

0.686 1.12 0.460547 0.539453

0.7105 1.16 0.4140027 0.5859973

0.735 1.2 0.3656748 0.6343252

0.784 1.28 0.2450877 0.7549123

0.79625 1.3 0.2235711 0.7764289

0.82075 1.34 0.1971868 0.8028132

Continued on next page...
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Table A.1 – Continued

∆p [Pa] CT W2 m/s a

0.8575 1.4 0.1713448 0.8286552

0.91875 1.5 0.1222184 0.8777816

0.98 1.6 0.08404594 0.91595406

1.04125 1.7 0.05170799 0.94829201

1.1025 1.8 0.02824944 0.97175056

1.47 1.9 −0.00605777 1.00605777

1.53125 2 −0.03325586 1.03325586

1.715 2.2 −0.08334035 1.08334035

1.96 2.4 −0.1279512 1.1279512

2.26625 2.5 −0.1513021 1.1513021

2.45 2.8 −0.2185324 1.2185324

2.75625 3.2 −0.3064317 1.3064317

3.0625 3.7 −0.4068528 1.4068528

6.125 4 −0.4653117 1.4653117
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Appendix B

Copyright agreements
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B.1 Copyright statement for figure 1.3

Figure 1.3 from chapter 1 is reproduced from Wikimedia Commons, a freely licensed

media file repository. Files are licensed under the Creative Commons Attribution-

Share Alike 2.0 and/or 3.0 Unported license. According to these license, permission

is granted to:

1. Share, copy, distribute and transmit the work.

2. Remix, adapt the work.

Under the following conditions:

1. Attribution You must attribute the work in the manner specified by the author

or licensor (but not in any way that suggests that they endorse you or your use

of the work).

2. share alike If you alter, transform, or build upon this work, you may distribute

the resulting work only under the same or similar license to this one.
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ATTRIBUTIONS:

† Picture from figure 1.3 was taken by Hans Hillewaert. Source and per-

missions availables at: http://en.wikipedia.org/wiki/File:Windmill_D1_

(Thornton_Bank).jpg, under CC-BY-SA-3.0.
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B.2 Copyright statement for figure 1.1

Figure 1.1 from chapter 1 is reproduced from the Siemens’ press release:

https://www.siemens.com/press/IM2015050765WPEN under the following terms of

use:

Press Pictures: Copyright

Siemens press photos may only be used for editorial purposes. All copyrights belong

to Siemens AG, Munich/Berlin, unless another copyright is expressly given. Copy-

rights remain undiminished if the pictures are incorporated into an archive, either

electronically or manually. Pictures used for editorial purposes, modified, duplicated

and/or electronically altered must bear the credit “’’. Commercial use or sale of the

pictures and data, even in electronically manipulated form, is prohibited.

Specific restrictions regarding the use of the pictures could arise from the picture

caption.

The photos may be printed free of charge, but in the case of print media we would

appreciate a copy for our records. If pictures are used in films or electronic media,

brief notification would suffice.
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Email:

presspictures.cc@siemens.com

Postal address:

Publicis Pixelpark

Picturedesk

Implerstrae 11

81371 Munich

Germany
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B.3 Permission to use figure 1.2

Anurag Rajan <arajan@mtu.edu>

Permission to use image
3 messages

Anurag Rajan <arajan@mtu.edu> Mon, Jul 11, 2016 at 10:45 AM

To: trevj@trevorjohnston.com

Hello,

 I am currently working on a paper concerned with wind turbine research as part of my PhD dissertation. I was

hoping to use the following image from a 2015 news article in Popular Science -

http://www.popsci.com/sites/popsci.com/files/styles/large_1x_/public/wind-turbines-hiw_0.jpg?itok=9HL6EseU

This image is from the report titled  "Building Smarter Wind Turbines - Eric Loth thinks like the wind" dated May 20,

2015, by Osha Gray Davison.

(link -  http://www.popsci.com/eric-loth-thinks-wind).

I have already contacted both Popular Science and Dr. Eric Loth, and was directed to you for permission to use that

image. I would really appreciate it if I could get permission to re-use that image as it would greatly enhance the

quality of my journal submission and subsequently my PhD dissertation. 

Thanks & regards,

Anurag Rajan

Graduate Student

Michigan Technological University

Trevor Johnston <trevj@trevorjohnston.com> Mon, Jul 11, 2016 at 11:04 AM

To: Anurag Rajan <arajan@mtu.edu>

Hi Anurag,

Yes you're free to use the graphic for your paper. I just ask that you please credit trevorjohnston.com.

Regards,

Trevor

Sent from my iPhone

[Quoted text hidden]

Anurag Rajan <arajan@mtu.edu> Mon, Jul 11, 2016 at 11:16 AM

To: Trevor Johnston <trevj@trevorjohnston.com>

Thanks a lot Trevor. I really appreciate the quick response. I'll definitely credit you for that graphic.

Regards,

Anurag

1 of 2 4/22/2017 12:54 PM
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